The Aggregate Effects of Global and Local Supply Chain Disruptions: 2020–2022

G. Alessandria, S.Y. Khan, A. Khederlarian, C. Mix, K.J. Ruhl

IMF | May 2023

Authors' opinions only. Does not reflect views of Federal Reserve or World Bank.

Bigger research agenda

- ► How do firms manage supply disruptions?
- ► How do supply disruptions affect GDP, employment, prices...
- ► Firms manage supply chains with
 - Inventory
 - ► Shipping mode choice
 - ► Supplier redundancy
- Need models with these features
- Our attempts
 - ▶ "The aggregate effects of global and local supply chain disruptions"
 - "Mitigating international supply-chain risk with inventories and fast transport"
 - "Supply-chain recessions"

Supply chain disruptions

- 1. Getting inputs for sale or production has been challenging since 2020
 - Confluence of factors
 - Unexpected pace of recovery
 - Production disruptions
 - ► Reduced air freight capacity
 - Congestion effects
 - Disruptions happening both internationally and domestically
 - $\blacktriangleright~$ Lead time on inputs: 65 days \rightarrow 100 days
 - Mix of longer lead times and longer shipping times
- 2. Firms lack buffer stocks to absorb these delays
 - Consumer stockouts high globally (Cavallo & Kryvstov, 2021)
- 3. Not unique to COVID, supply delays common from 1950-1987

Delivery delays on production inputs

The aggregate impact of supply disruptions

- ► How do supply disruptions/delays affect aggregate
 - ► Employment?
 - ► Production?
 - ► Consumption?
 - Prices?
- ▶ Focus on 2020-22
- Standard "macro" frameworks ill-equipped to provide answers
- Model ingredients
 - Firms can hold inventories, but at a cost (interest, depreciation)
 - Fixed order costs
 - Delivery takes time and is uncertain (delays)
 - ► Firm-level demand is uncertain
- ► In model, production/consumption may be constrained by availability of goods

Findings

- ▶ Fit several shocks in model to match 2020-2022 data
- ► At its peak, international delays lead to
 - ► Production –12%
 - ► Consumption –7%
 - ► Consumer prices +12%
- Effects arise from
 - 1. Delays \rightarrow higher carrying costs
 - 2. Production disrupted from lack of inputs
- ► Uneven effects across firms: affect low-inventory products most

Roadmap

- 1. Model
- 2. Firms decision rules in steady state and during supply disruption
- 3. Experiments
 - Transitory delays
- 4. Fit the model to 2020-2022 data
 - ► Decompose the effects

Supply disruptions

Barrot and Sauvagnat (2016), Boehm, Flaaen and Pandalai-Nayar (2019), Carvalho et al (2020), Cavallo and Krystov (2021)

GE inventory models

Khan and Thomas (2007), Alessandria, Kaboski and Midrigan (2010, 2011, 2013), Iacoviello, Schiantarelli and Schuh (2011), Ortiz (2021), Carreras-Valle (2021)

Effect of timeliness on trade

Djankov, Freund and Pham (2010), Hummels and Schaur (2013), Clark, Kozlova and Schaur (2014), Feyrer (2019, 2021), Leibovici and Waugh (2019)

Model structure

- ► Two countries: home and foreign (*), complete markets
- ► The aggregate state is η_t and the aggregate history is $\eta^t = (\eta_0, ..., \eta_t)$
- ► Two continua of retail/wholesale firms
 - ► Use "manufacturing inputs" to produce differentiated goods
 - ► Sell to the consumption good firm and manufacturing-good firm
 - ► One continuum buys domestic manufactures (D), one buys imported (I)
 - ► Fixed order cost, shipping delays, demand uncertainty vs. holding costs
- Representative consumption-good firm
 - ▶ Uses retail goods from *D* and *I* sector to produce consumption
- Representative manufactures firm
 - ▶ Uses retail goods from *D* and *I* sector and labor to produce
 - ► Sells to domestic retailers and foreign country import retailers
- Domestic & imported goods differ in fixed costs + 'timeliness'
 - ► Local and global supply chains

Households

► Choose consumption, labor supply, and state-contingent debt

$$\max \sum_{t} \sum_{\eta^{t}} \beta^{t} \pi(\eta^{t}) \left[\ln C(\eta^{t}) + \psi \ln(1 - L(\eta^{t})) \right]$$

s.t. $P_{c}(\eta^{t})C(\eta^{t}) + \sum_{\eta^{t+1}} Q(\eta^{t+1}|\eta^{t})B(\eta^{t+1}) = B(\eta^{t}) + W(\eta^{t})L(\eta^{t}) + \Pi(\eta^{t})$

Consumption-good producers

- ▶ Perfect competition + CRS \rightarrow representative firm
- ► Combines domestic (D) and imported (I) varieties
- ► Variety-specific demand shocks *v*

$$Y_{c}(\eta^{t}) = \left[\left(\int_{0}^{1} \nu_{D}(j,\eta^{t})^{\frac{1}{\theta}} c_{D}(j,\eta^{t})^{\frac{\theta-1}{\theta}} dj \right)^{\frac{\theta}{\theta-1}\frac{\gamma-1}{\gamma}} + \tau_{c}^{\frac{1}{\gamma}} \left(\int_{0}^{1} \nu_{I}(j,\eta^{t})^{\frac{1}{\theta}} c_{I}(j,\eta^{t})^{\frac{\theta-1}{\theta}} dj \right)^{\frac{\theta}{\theta-1}\frac{\gamma-1}{\gamma}} \right]^{\frac{\gamma}{\gamma-1}}$$

► Standard profit maximization yields

$$c_{D}(j,\eta^{t}) = \left(\frac{p_{D}(j,\eta^{t})}{P_{D}(\eta^{t})}\right)^{-\theta} \left(\frac{P_{D}(\eta^{t})}{P_{C}(\eta^{t})}\right)^{-\gamma} \nu_{D}(j,\eta^{t}) \mathbf{Y}_{c}(\eta^{t})$$
$$c_{l}(j,\eta^{t}) = \left(\frac{p_{l}(j,\eta^{t})}{P_{l}(\eta^{t})}\right)^{-\theta} \left(\frac{P_{l}(\eta^{t})}{P_{C}(\eta^{t})}\right)^{-\gamma} \nu_{l}(j,\eta^{t}) \tau_{C} \mathbf{Y}_{c}(\eta^{t})$$

Manufactures producers

- $\blacktriangleright~$ Perfect competition + CRS \rightarrow representative firm
- ► Combines labor, domestic (D), and imported (I) varieties
- Variety-specific demand shocks ν (same as in consumption)

$$\begin{split} \boldsymbol{M}(\boldsymbol{\eta}^{t}) = & \boldsymbol{L}_{\boldsymbol{\rho}}^{1-\alpha} \boldsymbol{Y}_{\boldsymbol{m}}^{\alpha} \\ \boldsymbol{Y}_{\boldsymbol{m}}(\boldsymbol{\eta}^{t}) = & \left[\left(\int_{0}^{1} \nu_{\boldsymbol{D}}(j,\boldsymbol{\eta}^{t})^{\frac{1}{\theta}} \boldsymbol{m}_{\boldsymbol{D}}(j,\boldsymbol{\eta}^{t})^{\frac{\theta-1}{\theta}} dj \right)^{\frac{\theta-1}{\eta-1}\frac{\gamma-1}{\gamma}} + \tau_{\boldsymbol{m}}^{\frac{1}{\gamma}} \left(\int_{0}^{1} \nu_{\boldsymbol{l}}(j,\boldsymbol{\eta}^{t})^{\frac{1}{\theta}} \boldsymbol{m}_{\boldsymbol{l}}(j,\boldsymbol{\eta}^{t})^{\frac{\theta-1}{\theta}} dj \right)^{\frac{\theta-1}{\gamma-1}} \right]^{\frac{\gamma}{\gamma-1}} \end{split}$$

- ► Standard profit maximization yields demands: $m_D(j, \eta^t), m_I(j, \eta^t)$
- Price of the manufactured good: $p^m(\eta^t)$,

Retailers

- ► Two continua of monopolistic competitors: *D*, *I* (focus on a *D* firm)
- Firm *j* begins period with inventory $s_D(j)$, demand shock $\nu(j)$
 - Chooses order size $z_D(j)$ and prices $p_D(j)$
- If firm places an order: $z_D(j) > 0$
 - Pay fixed cost ϕ_D (units of labor)
 - ▶ With probability $1 \mu_D$, order arrives at *t*; μ_D arrives at *t* + 1
 - μ_D allows us to vary average length of delivery lag
- ► For now: μ_D , μ_I are constants. Later: μ_D , μ_I are AR(1).
- Firm's state is $(\eta_t; s_t, \nu_t)$
- \blacktriangleright Timing: observe demand shock \Longrightarrow place order \Longrightarrow observe delivery \Longrightarrow set prices

Retailer optimization (suppressing the aggregate state)

$$oldsymbol{V}(oldsymbol{s},
u) = \max\left\{oldsymbol{V}^{oldsymbol{N}}(oldsymbol{s},
u),\ oldsymbol{J}(oldsymbol{s},
u) - \phioldsymbol{W}
ight\}$$

Value of not placing an order

$$\mathcal{V}^{N}(\boldsymbol{s}, \nu) = \max_{p,c,m} \pi(\boldsymbol{c}(p, \nu), \boldsymbol{m}(p, \nu)) + \mathop{\mathbb{E}}_{\nu'} \boldsymbol{Q} \boldsymbol{V}(\boldsymbol{s}', \nu')$$

s.t. $\boldsymbol{s} \ge \boldsymbol{c}(p, \nu) + \boldsymbol{m}(p, \nu)$
 $\boldsymbol{s}' = (1 - \delta)(\boldsymbol{s} - \boldsymbol{c}(p, \nu) - \boldsymbol{m}(p, \nu))$

► Value of placing an order (within period; no primes)

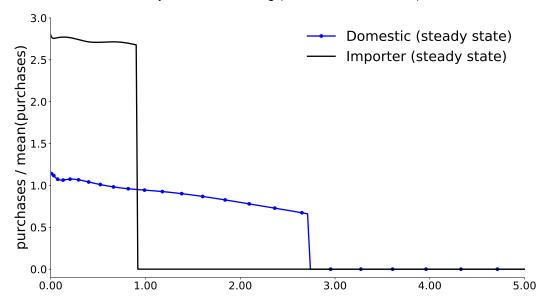
$$J(\boldsymbol{s},\nu) = \max_{\boldsymbol{z}} -\boldsymbol{p}^{\boldsymbol{m}}\boldsymbol{z} + (1-\mu)\boldsymbol{V}^{\boldsymbol{N}}(\boldsymbol{s}+\boldsymbol{z},\nu) + \mu\boldsymbol{V}^{\boldsymbol{O}}(\boldsymbol{s},\nu,\boldsymbol{z})$$

Value when order but it does not arrive

$$egin{aligned} \mathcal{V}^{O}(m{s},
u,m{z}) &= \max_{p,c,m} \pi(m{c}(p,
u),m{m}(p,
u)) + \mathop{\mathbb{E}}\limits_{
u'} \mathcal{Q}\mathcal{V}(m{s}',
u') \ & ext{s.t.} \ \ m{s} \geq m{c}(p,
u) + m{m}(p,
u) \ & ext{s}' = (1-\delta)(m{s}+m{z}-m{c}(p,
u) - m{m}(p,
u)) \end{aligned}$$

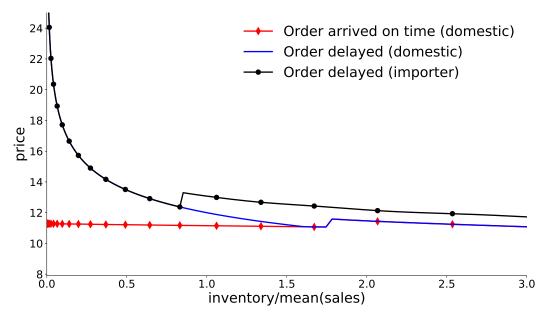
Decision rules

- ► Inventories/ordering follow an "Ss rule"
 - Conditional on reordering


$$\mathop{\mathbb{E}}_{\nu',\mu'} Q(\eta'|\eta) V_1(s',\nu';\eta') = p^m(\eta)$$

Prices are a markup over the value of inventories

$$p(\boldsymbol{s},\nu) = \frac{\theta}{\theta-1} \mathop{\mathbb{E}}_{\nu'} Q(\eta'|\eta) V_1(\boldsymbol{s}',\nu';\eta')$$


► If goods are delayed, set price to "stock out"

$$\max_{p} p \text{ s.t. } c(p, \nu) + m(p, \nu) = s$$

Policy function: Ordering (median demand shock)

Policy function: Price (median demand shock)

Feasibility (focusing on home country)

Manufactures

$$M(\eta^t) = \int z_D(j,\eta^t) dj + \int z_I^*(j,\eta^t) dj$$

Labor

$$L(\eta^{t}) = L_{p}(\eta^{t}) + \int \phi_{D} \mathbf{1}_{z_{D}(j,\eta^{t})} dj + \int \phi_{I} \mathbf{1}_{z_{I}(j,\eta^{t})} dj$$

Inventories

- ► For accounting, split inventories across manufacturing and retail.
- ► Retail inventory (on the shelf)

$$\begin{split} I_{r}(\eta^{t}) &= \int \left[s_{D}(j,\eta^{t}) - c_{D}(j,\eta^{t}) - m_{D}(j,\eta^{t}) + (1-\mu_{D})z_{D}(j,\eta^{t}) \right] dj \\ &+ \int \left[s_{l}(j,\eta^{t}) - c_{l}(j,\eta^{t}) - m_{l}(j,\eta^{t}) + (1-\mu_{I})z_{l}(j,\eta^{t}) \right] dj \end{split}$$

► Manufacturing inventory (on the ship)

$$I_m(\eta^t) = \int \mu_D \, z_D(j,\eta^t) dj + \int \mu_I \, z_I(j,\eta^t) dj$$

Three model specifications

- 1. Stationary steady state (calibration)
- 2. Dynamics of model with only international delay shock (highlight the mechanisms)
- 3. Dynamics of model with shocks to labor supply, delays, consumption (quantitative)

Assigned parameters

► Model period is one quarter

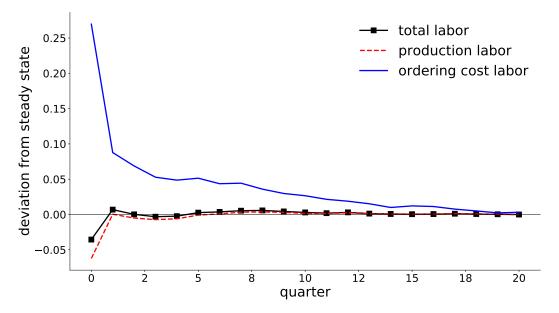
Parameters			Moments	
Discounting	β	0.96 ^{0.25}	Annual real rate	4%
Input cost share	α	0.6	Manufacturing GO/VA	2.8
International delay	μ_I	0.5	Authors' calculation	45 days
Frisch elasticity	ψ	2	Steady State Labor	1/3
Substitution within source	θ	4		
Substitution across source	γ	1.1		
IES	σ	1		

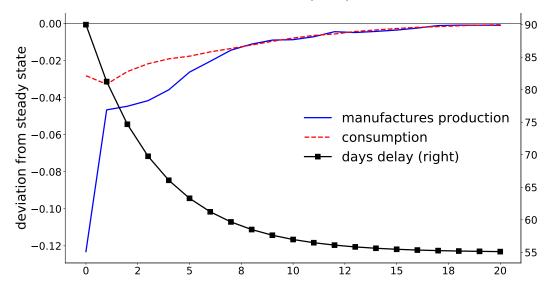
Jointly estimated

- ► Focus on the manufacturing and trade sector
- ► Inventory holdings and order frequency: δ , μ_D , σ_{ν}^2 , ϕ_D , ϕ_I chosen so that
 - importing firms hold larger inventories than domestic firms (\approx 2x)
 - importing firms order less frequently (\approx half)
 - imported goods arrive with 0.5 quarter delay on average
 - importers order every 4 quarters on average
 - aggregate inventories to purchases ratio of 1.3 quarters
- Elasticity of substitution between sources: $\gamma = 1.1$
- ▶ Trade preferences τ_c and τ_m chosen so that
 - ▶ import share matching U.S. data
 - ▶ share of consumption vs material imports from data

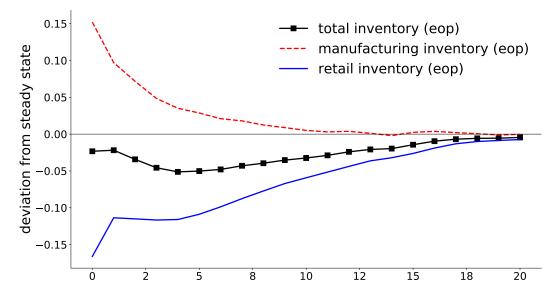
Parameters		Moments	
Home bias manufactures	<i>τ</i> _{<i>m</i>} 0.4	Imports in maninput bundle	15%
Home bias consumption	$ au_{c}$ 0.07	Manufactures' share of imp	80%
Depreciation	δ 0.045	Inventory-purchases ratio (dom)	1.1
Domestic delay	μ_D 23 days	Inventory-purchases ratio (imp)	2.4
Demand variance	σ_{ν}^{2} 1.5	Inventory-purchases ratio (agg)	1.3
Fixed order cost [†] (dom)	ϕ_{D} 2.5%	Order freq (dom)	50%
Fixed order $cost^{\dagger}$ (imp)	ϕ_1 15%	Order freq (imp)	25%

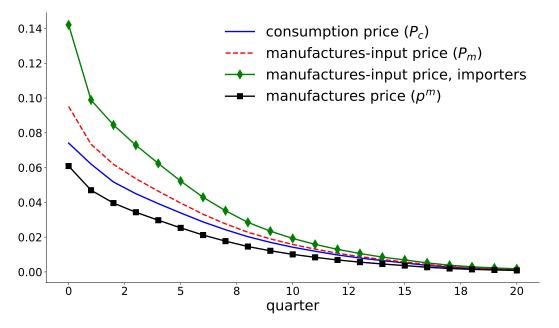
[†]Expressed as share of average revenue.


- ► Home biases largely determine import ratios
- ▶ Higher δ hold smaller inventories; higher μ hold larger inventories
- Different ϕ drive different order frequency

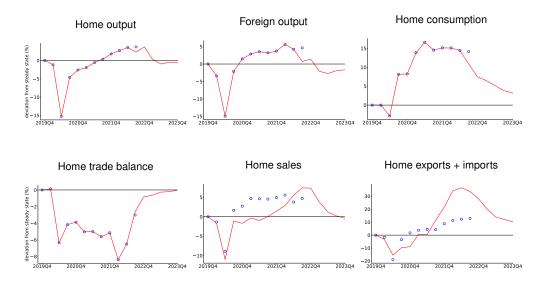

International delivery delays: Dynamics

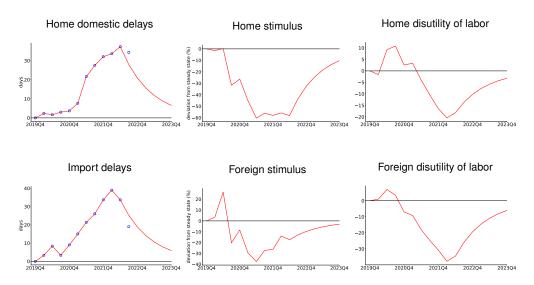
Start from steady state; unforeseen change in μ_I from 0.5 to 1; perfect foresight afterward


 $\mu_{I,t+1} = 0.5\mu_I^{ss} + \rho_I\mu_{It}$

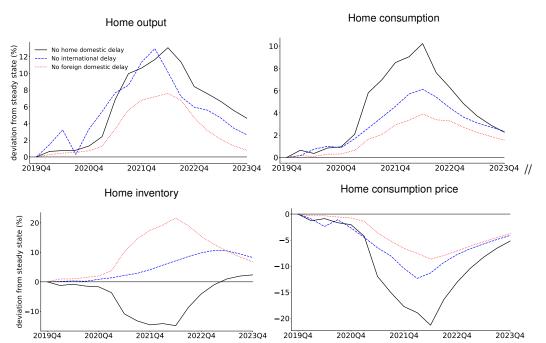

▶ Impulse increases average delivery time from 45 to 90 days

International delivery delays



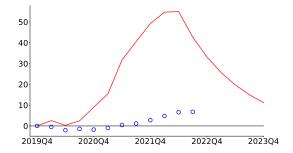

Fitting the model to the data

- ▶ 2019Q4-2022Q2
- Shocks: international delays; domestic delays (x2); consumption stimulus (x2); labor supply (x2)
 - ► Restrict delay shocks to be symmetric
 - ► Stimulus, labor supply shocks asymmetric
- Targets: production (x2); domestic delays (x2); international delays; home consumption; trade balance
- ► Everything effects everything, but
 - $\blacktriangleright\,$ Labor supply (x2) $\rightarrow\,$ output in US and ROW
 - $\blacktriangleright~$ Stimulus (x2) $\rightarrow~$ US consumption & trade balance


Endogenous variables

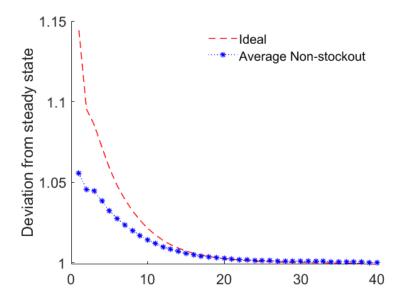
Exogenous shocks

The effect of delays



31

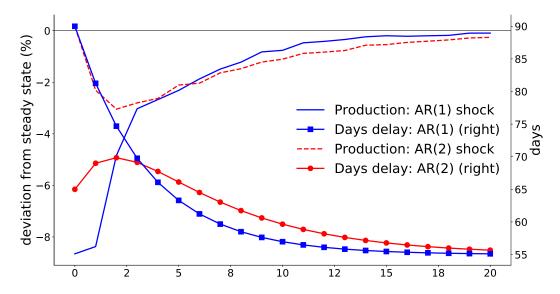
- 1. Prices
- 2. Expectations


Misses

► Timing assumption: Firms change price after observing arrival

- Prices improved by setting prices before delivery
 - ▶ Minimal effect on quantities since sales still constrained by inventory
 - ► Current prices capture "shadow price" of consumption.

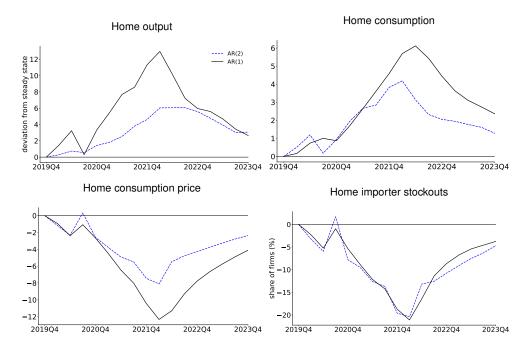
Impulse response: Consumption prices



The role of expectations

- Aggregate effects depend on the size and persistence of delays
- ► Hard to discipline in current environment—we chose AR(1)
- ► Historically, US delays are hump-shaped (AKKRS, 2022; 1950-1990)
- ► Hump-shaped shocks can be expansionary in the short run
 - Precautionary stockpiling (order toys for Xmas sooner)

International delivery delay AR(1) v. AR(2)


Manufacturing production

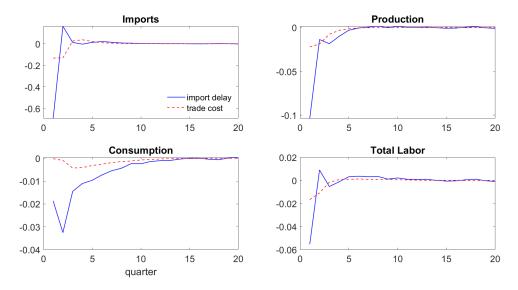
Quantitative implications: AR(2) vs AR(1)

- Redo fitting with AR(2) import delay shocks.
- Firms see that delays will get worse, and adjust
- ► Compare counterfactual effects:
 - ► Most effects about 1/3 smaller
 - Slightly different timing

The effect of import delays: AR(1) v AR(2)

38

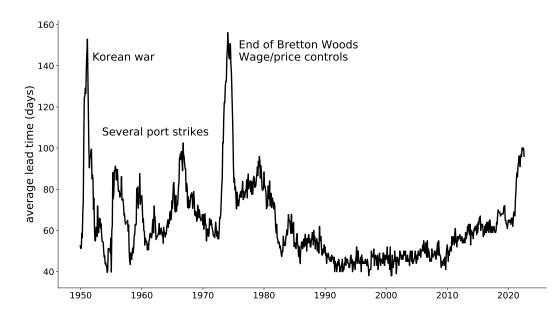
Summary


- Develop a GE model of time to restock
- ► Large aggregate effects of changing the speed of trade
- Supply delays much more costly than cost shocks
- ► Mitigated by inventory levels at firm & aggregate level
- ► For policy, need to introduce congestion effects (in progress)

Time vs. carrying costs

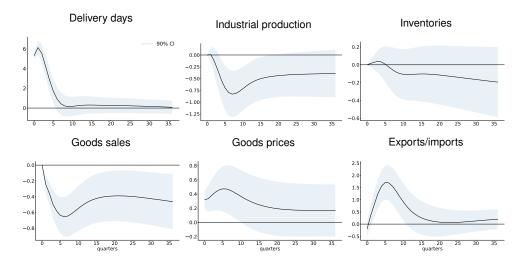
- ► Consider an increase in shipping costs equivalent to extra carrying costs of delay
- Cost shocks less costly because they do not constrain the orders of high-demand low-inventory firms
- ► Explains willingness to pay very large trade costs to accelerate trade

- ► Two main mechanisms at work
- 1. (Time) Reduced supply for production and consumption today
 - $\blacktriangleright\,$ If nothing arrives today \rightarrow production & consumption limited to inventory
 - Decreases demand for production labor
 - Affects firms with lowest inventories most (different from trade cost)
- 2. (Cost) Higher carrying costs of inventories
 - ▶ Interest costs: (extra days/365) × r
 - Depreciation costs: (extra days/365) $\times \delta$
 - ► Fixed costs: more orders burns up resources


Time vs. carrying costs

Delays are common

- Delays have been important in the past, too
- ► Consider VAR evidence from 1950–2020
 - ► Delays more common 1950–1987
- ▶ Part of "Supply-chain recessions" with Alessandria, Khan, Khederlarian, and Mix


Delivery delays on production inputs

Some VAR evidence

- Consider VAR with 3 blocks
- ▶ Real: IP, Sales, Inventory, Employment, ISM Delays
- ► Nominal: Wages, Price of Goods/Wage
- ► Int'l: Trade, Export-Import Ratio, Terms of trade, Price of Traded goods
- ▶ Real variables, then delays, then prices (robust to ordering)
- ► Consider impulse from delays and orthogonalized response of system

Effects of a delay shock

