Firm Dynamics in Trade

G. Alessandria, C. Arkolakis, and K.J. Ruhl

February 9, 2021

Introduction: Two broad sets of questions

- ► Firm-level dynamics and trade
 - ► Try to understand: exporter life cycle, entry, exit
 - ► Roles of technology, trade barriers, uncertainty, learning
- ► Aggregate outcomes shaped by firm-level dynamics
 - ► How do the welfare gains from trade liberalization depend on firm-level behavior?
 - Do models with firm-level dynamics help us understand the longand short-run behavior of aggregate trade in response to changes in tariffs or over the business cycle?
 - What explains the delayed response of the trade balance to a change in the real exchange rate?

- 1. Data
 - ▶ What do the micro data tell us about firm export dynamics?
 - What macro dynamics might firm-level dynamics help us understand?
- 2. Partial equilibrium: The canonical model
 - ► Dynamic firm-choice problem
 - ► Ability of the model to match the data
 - Extensions to the model
- 3. General equilibrium aggregation
 - ► Embed PE model in general equilibrium
 - ► How do aggregate dynamics depend on firm-level dynamics?

Focus on Colombia

- Dynamic linked panel that is easy to access and widely used. Information on total sales and custom data by destination.
 - Data and codes available at: kimjruhl.com (not yet!)
- Regression tables
 - ► We suppress standard errors here, but they are in the paper
 - ► The usual notation: *p < 0.05,**p < 0.01,***p < 0.001</p>

Decomposing aggregate trade

- Firms $i = 1 \dots n$ export. Firms $i = n + 1 \dots N$ do not.
- Decompose aggregate export-sales ratio into three margins
 - 1. Extensive margin (first term on rhs)
 - 2. Intensive margin (second term on rhs)
 - 3. Exporter size premium (third term on rhs)

$$\frac{\sum\limits_{i=1}^{n} exports_{i}}{\sum\limits_{i=1}^{N} sales_{i}} = \frac{n}{N} \times \frac{n^{-1} \sum\limits_{i=1}^{n} sales_{i} \times exs_{i}}{n^{-1} \sum\limits_{i=1}^{n} sales_{i}} \times \frac{n^{-1} \sum\limits_{i=1}^{n} sales_{i}}{N^{-1} \sum\limits_{i=1}^{N} sales_{i}}$$

- ► Use this framework to organize our empirical study
- First, take exports to the world, later exports by destination country

Decomposing aggregate trade

	All values are expressed as percentages							
	United States		Colombia		Colombia 100+			
Panel A	1987	2007	log diff.	1983	2013	1983	2013	log diff.
Export/sales	6.3	11.6	61.1	5.2	14.6	5.2	13.9	97.7
Extensive	43.2	63.0	37.7	10.8	24.6	36.5	59.8	49.5
Intensive	9.9	15.5	44.9	12.8	23.5	10.8	20.3	62.8
Premium	148.0	119.5	-21.4	374.9	252.4	132.1	114.2	-14.6
Panel B								
Starter rate	10	_		2.0	5.5	6.9	13.8	
Stopper rate	17	-		16.5	16.1	11.9	10.1	

 \blacktriangleright Trade barriers fall \rightarrow trade grows

- ► Extensive and intensive margins grow
- \blacktriangleright Newer, smaller exporters \rightarrow size premium falls

The extensive margin

- Large literature on drivers of entry and exit
- Laws-of-motion for exporters and total firms

$$n_{t+1} = \gamma_{t+1}^{\text{starter}} \left[\delta_{nt} (N_t - n_t) + N_{E,t+1} \right] + \left(1 - \gamma_{t+1}^{\text{stopper}} \right) \left[\delta_{xt} n_t \right]$$
$$N_{t+1} = \delta_{nt} (N_t - n_t) + \delta_{xt} n_t + N_{E,t+1},$$

- δ are the survival rates; N_E mass of newly created firms
- $\gamma^{\text{starter}}, \gamma^{\text{stopper}}$ are the export starter and stopper rates
 - ► increasing starter rate, flat stopper rate → increasing extensive margin (previous table)

Fact #1. Past export participation is the main predictor of current export participation.

		Export status _t						
	(1)	(2)	(3)	(4)				
log sales _t	0.129***	0.053***	0.053***	0.043***				
exporter _{t-1}		0.640***	0.593***	0.636***				
exs _{t-1}			0.217***	0.220***				
N adj. R ²	76,662 0.330	76,662 0.618	76,662 0.622	76,662 0.610				

Columns 1-3 include industry and year fixed effects. Column 4 includes year fixed effects.

- ► Linear probability model
- ► Size (measured by sales) matters less when controlling for history
- Coefficient on exporter $_{t-1} < 1$

Fact #2. Exporter exit rates fall with past export intensity and time in the export market.

	Stop	opert
	(1)	(2)
$\log sales_{t-1}$	0.003	
log exports $_{t-1}$	-0.032***	-0.022***
starter $_{t-1}$	0.244***	0.207***
$starter_{t-2}$	0.119***	0.084***
log destinations $t-1$		-0.075***
log months $t-1$		-0.100***
Market	World	Country
Ν	15,631	324,297
adj. <i>R</i> ²	0.157	0.319

Column 1 includes industry and year fixed effects. Column 2 includes destination-year fixed effects.

- Linear probability model
 - ► Col 1: Total exports
 - ► Col 2: Exports by country
 - months = # months with positive shipments
 - destinations = # countries served
- Export volume, not overall size, decreases exit prob.
- Newer exporters more likely to exit

Fact #3. The exporter entry rate is low but is increasing in size and past export activity.

arter _t 2) (3) 8*** 0.004***
2) (3) 8*** 0.004***
8*** 0.004***
0.004***
5*** 0.158***
1***
orld Country 289 20,598,517 111 0.036
1

Columns 1&2 includes industry and year fixed effects. Column 2 includes destination-year fixed effects.

- Linear probability model
 - Col 1&2: Total exports
 - Col 3: Exports by country
 - destinations = # countries served
- Entry rates are low
- Size matters but previous experience is more important
- Previous export experience raises the probability of *reentry* by 20 percentage points

The intensive margin

- ▶ Facts #1-#3 about the extensive margin: Does the firm export at all?
- Now we turn to the intensive margin: Conditional on exporting, how much does the firm export?
- Measure it as the exports-to-total-sales ratio

$$exs_{it} = \frac{exports_{it}}{sales_{it}}$$

Regress this on lagged exs, and time since entry or until exit

$$exs_{it} = \alpha + \sum_{k=0}^{K} \rho_{-k} exs_{i,t-k} + \beta_1 d_{it}^{\text{starter}} + \beta_2 d_{it}^{\text{exporter}} + \sum_{k=0}^{K} \theta_k d_{i,k}^{\text{stopper}} + \mu d_{it}^{\text{start,stop}} + \varepsilon_{it}$$

The intensive margin

		Export-tota	al-sales ratio _t	
	(1)	(2)	(3)	(4)
exporter _t	0.216***	0.242***	0.073***	0.240***
startert		-0.093***	0.070***	-0.078***
stopper _{t+1}		-0.087***	-0.028***	-0.097***
$starter_t, stopper_{t+1}$		0.063***	0.012	0.045***
exs _{t-1}			0.543***	
exs _{t-2}			0.190***	
stopper _{t+2}				-0.040***
stopper _{t+3}				-0.028***
N	60,668	60,668	60,668	37,072
Adj. R ²	0.358	0.378	0.692	0.381

Fact #4. Export intensity rises with time in the export market.

- ► Average intensity of 20 percent. Home bias at the firm level.
- ► New and soon-to-exit exporters sell less
- ► Export intensity is persistent
- ► Overall life cycle pattern is one of entry, growth, shrinkage, exit
 - ► Use coefficients to trace out pattern

	1	2	3	4	5	6	7	Long run
Starter	14.3	15.1	18.2	20.1	21.7	22.9	23.9	27.4
	-7	-6	-5	-4	-3	-2	-1	
Stopper	22.1	23.2	21.8	19.5	18.8	19.1	16.9	

Export to total-sales ratio

- Long-run ratio is $exs_{LR} = \alpha/(1 \sum_{k=0}^{K} \rho_{-k})$
- ► A new exporter grows by 50 percent in its first five years
- ► An exiting firm shrinks by about 30 percent in its last five years

Further decomposing the intensive margin

- ▶ We have been considering a firm's total exports to the world
- With transactions-level data, we can learn more about how a firm's total exports grow/shrink
 - ► By adding or subtracting markets (countries, e.g. Arkolakis 2016)
 - By shipping more or less frequently (e.g. Alessandria, Kaboski, Midrigan 2010)
- This takes some of the intensive margin growth and turns it into extensive margin growth
- ▶ This data let us think more about how the exporting technology works.

Destinations

- ► Previous facts largely unchanged at the destination level
- ► Fact #2: Stopper rates
 - ► Similar role for history
 - ► Stopper rates falling in number of months a firm ships
 - Stopper rates falling in number of markets served
- ► Fact #3: Starter rates
 - Past exporting good predictor of entry into a country
 - Starter rates rising in number of markets served
- ► Export costs may depend on access to other markets...

Destinations

- ► Fact #4: Intensive margin growth (exports, not exports-sales ratio)
 - ► New exporters in a market grow fast for only one year: starter_{t-2} insignificant or negative

Export growth by destination

	$\Delta_t \log export$					
	(1)	(2)	(3)	(4)		
starter _{t-1}	0.245***	0.039**	0.410***	0.068**		
stopper _{t+1}	-0.948***	-0.280***	-1.042***	-0.251***		
$starter_{t-2}$	-0.011	-0.021*				
$\log exports_{t-1}$	-0.184***	-0.147***				
log destinations $_{t-1}$	-0.077***	-0.071***	0.070**			
$\log months_{t-1}$	0.033***		0.071***			
$\log \text{ total exports}_{t-1}$	0.105***	0.077***	-0.135***	-0.089***		
$\Delta_t \log$ months		1.034***		0.988***		
$\Delta_t \log$ destinations				0.146***		
Market <i>N</i> adj. <i>R</i> ²	Country 131,282 0.116	Country 131,282 0.445	World 50,192 0.128	World 50,192 0.474		

Columns 1 and 2 include country-year fixed effects. Columns 3 and 4 include year fixed effects.

Shipment frequency

Fact #5: Most firms import or export a few times per year. Shipment size increases, and frequency decreases, in distance. Trade grows through more frequent and larger shipments.

- A role for inventories
- ► Suggests that exporters face fixed per-shipment costs

Micro data: Summary

- 1. Past export participation is the main predictor of current export participation.
- 2. Exporter exit rates fall with past export intensity and time in the export market.
- 3. The exporter entry rate is low but is increasing in size and past export activity.
- 4. Export intensity rises with time in the export market.
- Most firms import or export a few times per year. Shipment size increases, and frequency decreases, in distance. Trade grows through more frequent and larger shipments.

Aggregate effects of firm-dynamics

- Firm-level dynamics are slow: The small size, high exit rate, and slow growth of new exporters means that exports are reallocated away from existing exporters over time.
- Next table: What is the cumulative impact of new exporters?
 - After 12 months, 20 percent of exporters are new
 - ► After 60 months, 36 percent of exporters are new
 - ► After 12 months, entrants account for 11 percent of exports
 - After 60 months, entrants account for 21 percent of exports

	continuation rate			entrants' share			
Window (months)	1	6	12	36	12	36	60
Panel A: Number							
Firm			80	76	20	30	36
Firm, balanced			85	83	15	21	24
Firm*	64	65	59	41	41	54	63
Firm-destination*	54	63	60	46	40	54	62
Panel B: Export value							
Firm			89	91	11	18	21
Firm, balanced			94	98	6	8	7
Firm*	95	98	98	96	2	7	11
Firm-destination*	85	95	94	92	6	13	19

Panel A: Continuation rate is the share of exporters that remain exporters across two windows, e.g., 80 percent of firms who exported in a 12-month window export in the next 12-month window. Entran's share is the share of total exporters accounted for by entrants, e.g., 30 percent of exporters are firms that did not export 36 months prior. Panel B: The columns are defined analogously but for export volumes, rather than firm counts. * From the customs transaction-level data.

Aggregate data

 Aggregate trade tends to respond slowly to changes in trade barriers or business-cycle conditions

Aggregate trade in the United States

U.S. trade (exports plus imports)

U.S. net trade and real exchange rate

- Levels respond slowly to liberalization (left panel, solid line)
 - ▶ GATT/WTO rounds in 1967, 1979, 1994
- Levels respond with a lag to relative prices (right panel)

Aggregate data

 Aggregate trade tends to respond slowly to changes in trade barriers or business-cycle conditions

Fact #7: The long-run response of aggregate trade volumes to changes in trade policy is larger than the short-run response.

Aggregate data

 Aggregate trade tends to respond slowly to changes in trade barriers or business-cycle conditions

Fact #7: The long-run response of aggregate trade volumes to changes in trade policy is larger than the short-run response.

▶ ... but not always. The 2008 recession featured a sharp fall in trade.

Aggregate trade in the United States

U.S. trade (exports plus imports)

- Levels respond slowly to liberalization (left panel, solid line)
 - ▶ GATT/WTO rounds in 1967, 1979, 1994
- Levels respond with a lag to relative prices (right panel)
- At business-cycle frequencies, trade can fall sharply (left panel, dashed)
 - 2008 recession, coronavirus response

Understanding aggregate dynamics

- Time-varying slow and fast responses of trade to shocks are enormous challenges for static models
- Interpreted through a "gravity" model, these dynamics load onto the error term and we learn nothing about them. The dynamics are interpreted as shocks to trade barriers.
- Explicitly dynamic models allow us to learn more about the nature of these "shocks" and the structure of export costs/technologies

Sunk export entry cost models: overview

- Early development: Baldwin (86, 89); Baldwin & Krugman (89); Dixit (89ab) in partial equilibrium
- Considered dynamics following exchange rate shocks: focusing on the nonlinear TB-RER relationship (as in previous figure)
 - Option value models: Dixit (89)
 - ► Structural IO: Roberts & Tybout (97); Das, Roberts & Tybout (07)
 - ► Learning vs. selection: Clerides, Lach & Tybout (98)
- General equilibrium models largely focused on aggregate fluctuations & trade policy
 - Alessandria & Choi (07,19ab); Ruhl (08)
 - Alessandria & Choi (14ab); Alessandria, Choi, & Ruhl (13); Impullitti, Irrazabal, & Opromola (13)

Model outline

- 1. Firm decision problem in partial equilibrium
- 2. Success and challenges
- 3. Extensions
- 4. Embed the decision problem into general equilibrium

Model: decision problem

- ► Three key features in firm-level models of trade
 - 1. An investment technology
 - 2. An uncertain future return to that investment
 - 3. A depreciation process of that investment

• Consider a firm *i* making a decision to export: $x_{it} = \{0, 1\}$

$$V_t = \max E_t \sum_{s=t}^{\infty} \frac{1}{1+r_s} x_{is} \left(\pi_{is} \left(\cdot \right) - f_{is}(\cdot) \right)$$

- ► Fixed export costs: f_{it} (e_{it}, x_{it-1}, x_{it-2}, ..., x_{it-k}) depend on random variable and experience
- Flow profits: $\pi(x_{it}, z_{it}, d_{it})$
 - z_{it} = variables related to productive efficiency
 - d_{it} = variables related to foreign demand for firm i's
 - ► Assumes constant returns to scale, otherwise z_{it} (s_{it}, d_{it}) where s_{it} is sales at home

Model: foreign demand

► Assume a firm charging price *p_{it}* sells

$$d_{it}\left(\boldsymbol{p}_{it}\right) = \omega_{it}\left(\boldsymbol{p}_{it}\frac{\tau_{t}\xi_{t}\tilde{\xi}_{it}}{\boldsymbol{P}_{t}}\right)^{-\theta}\boldsymbol{D}_{t}$$

- Common factors: market size (D_t), real exchange rate (P_t), ad-valorem tariff (τ_t), iceberg trade costs (ξ_t)
- ► Idiosyncratic factors: demand shifter (ω_{it}) and $(\tilde{\xi}_{it})$ e.g., shipping/distribution technology
 - Two idiosyncratic factors redundant, combine into ξ_{it}
 - No congestion effects on distribution
- ► CES framework is common

- ► Since Baldwin & Krugman (89) & Roberts & Tybout (97) assume
- ► f (e_{it}, x_{it-1}): only t 1 export status matters (full depreciation of market-access investment)
- ► f(e_{it}, 1) < f(e_{it}, 0) : cost of entering exceeds continuation cost (upfront investment in market access)
- Fixed cost lowers iceberg cost from ξ = ∞ to ξ < ∞ (return on investment)</p>
- When fixed trade cost only depends on last period's export status the fixed cost and history variable are redundant.
- A richer model in which fixed costs depend on experience requires tracking longer history

Uncertainty

- Microeconomic $(z, \xi, f(\epsilon_{it}, x_{it-1}))$
 - ► Let z, ξ follow AR1 process $\left(\rho_z, \sigma_z^2, \rho_{\xi}, \sigma_{\xi}^2\right)$
 - Let stochastic component follow $\epsilon_{it} \sim \log \operatorname{Normal} \left(0, \sigma_{\epsilon}^2\right)$
 - Often assume aspect of ξ is learned upon entry (Learning)
- Macroeconomic
 - Processes for exchange rate (P_t) & demand (D_t) depend on equilibrium concept
 - ▶ In partial equilibrium (P, D) are exogenous AR processes
 - ► In general equilibrium, (P, D) depend on shocks and transmission (can be highly non-linear)
 - ► For tariffs no standard

Bellman Equation

► The firm solves a standard discrete-choice problem

 $V_{t}(x_{it-1}, z_{it}, \xi_{it}, f_{it}) = \max \left\{ V_{t}^{0}(x_{it-1}, z_{it}, \xi_{it}, f_{it}), V_{t}^{1}(x_{it-1}, z_{it}, \xi_{it}, f_{it}) \right\}$

- To solve this problem we will need to know
 - A firm's survival probability (δ_{it})
 - The interest rate (r_t)
- ▶ The *t*s capture non-stationary functions from aggregate shocks
 - ► Most partial equilibrium models assume stationarity
Bellman Equation

► Value of not exporting

$$V_t^0(x_{it-1}, z_{it}, \xi_{it}, f_{it}) = \pi_t(0, z_{it}, \xi_{it}) \\ + \delta_{it} \mathop{\mathsf{E}}_{z,\xi,f} \frac{1}{1 + r_{t+1}} V_{t+1}(0, z_{it+1}, \xi_{it+1}, f_{it+1})$$

Value of exporting

$$V_{t}^{1}(x_{it-1}, z_{it}, \xi_{it}, f_{it}) = \pi_{t}(1, z_{it}, \xi_{it}) \\ + \delta_{it} \mathop{\mathsf{E}}_{z,\xi,f} \frac{1}{1 + r_{t+1}} V_{t+1}(1, z_{it+1}, \xi_{it+1}, f_{it+1})$$

► Focus on a stationary environment for now (drop *ts*)

Decision Rules

- Assume 1) f is deterministic (i.e. σ_ε = 0) and 2) export and domestic profit increasing in z
- Optimal policy is a cutoff rule $z_m(\xi)$ s.t. $x_{it} = 1$ iff $z \ge z_m(\xi)$

$$f_{m} - [\pi (1, z_{m}(\xi), \xi) - \pi (0, z_{m}(\xi), \xi)] = \frac{\delta}{1 + r} E \begin{bmatrix} V^{1}(z', \xi', f_{1}) \\ -V^{0}(z', \xi', f_{0}) \end{bmatrix}$$
$$f_{m} - \Delta \pi (z_{m}(\xi), \xi) = \frac{\delta}{1 + r} E [\Delta V (z', \xi', f_{1}, f_{0})]$$

- The LHS is the current cost of exporting net of increased profits
- ► The RHS is the future benefit (increase in market value of the firm)

Breakevens

The gain in firm value from exporting

- ► The RHS of the break-even condition
- ► The upward sloping line in the figure
- Depends on fixed costs and persistence of shock
- ► The slope is increasing in the persistence of shocks
 - ► It determines both how long and how much you earn exporting
- ▶ The intercept is mostly determined by the gap between $f_0 f_1$
 - If $f_0 = f_1$ then $\Delta V = 0$
 - ► Holding f_1 constant, $\frac{\partial \Delta V}{\partial f_0} > 0$

The current cost of exporting

- ▶ The LHS of the break-even condition
- ► The downward sloping lines in the figure
- ► Holding fixed ξ profit decreases in z
 - ► Exporting more profitable to more productive firms

Distributions

- ► The cutoff thresholds and the process for (z, ξ) determine the measure of firm types μ (z, ξ, f)
- ▶ μ(z, ξ, f₀) [μ(z, ξ, f₁)] denotes the beginning of period non-exporters [exporters]
- ▶ The measures of current nonexporters and exporters

$$N_{N} = \int_{\xi} \int_{0}^{z_{0}(\xi)} \mu(z,\xi,f_{0}) + \int_{\xi} \int_{0}^{z_{1}(\xi)} \mu(z,\xi,f_{1})$$

$$N_{X} = \int_{\xi} \int_{z_{0}(\xi)}^{\infty} \mu(z,\xi,f_{0}) + \int_{\xi} \int_{z_{1}(\xi)}^{\infty} \mu(z,\xi,f_{1})$$

• The export participation share is $N_X/(N_N + N_X)$

$$N'_X = \delta_{X,X} \operatorname{Pr} (\operatorname{continue}) N_X + \delta_{N,X} \operatorname{Pr} (\operatorname{start}) N_N$$

$$N'_N = \delta_{X,N} \left[1 - \Pr(\text{continue})\right] N_X + \delta_{NN} \left[1 - \Pr(\text{start})\right] N_N + N_E$$

A more careful exposition would focus fully on

$$\mu'(z,\xi,f) = T(\mu(z,\xi,f))$$

Distributions

Properties

- Crucial outcome of dynamic decision: $z_1(\xi) < z_0(\xi)$
 - Harder to break into exporting than to stay
- This generates
 - Exporter hysteresis: Firms continue exporting after conditions deteriorate
 - Low exit rate: Exporters will delay exiting to avoid paying the entry cost again
 - ► Export Premium: Exporters are larger than nonexporters
 - Increasing in the average fixed cost
 - ► Falling in the difference in fixed costs

Sensitivity

- Consider impact of changes in current and future primitives abstracting from GE interactions
- Let's look at
 - 1. Trade barriers
 - 2. Uncertainty

Trade costs and Tariffs

- Consider three possible reductions in either (ξ, τ)
 - 1. Current trade costs temporary
 - 2. Future trade costs permanent
 - 3. Current and future trade costs

Temporary current

- Lowering today's tariff will shift up the $LHS_m(z)$
- ► Increasing entry and decreasing exit
- Through law of motion, trade will remain persistently high, only gradually mean-reverting

Permanent future

- Lowering tariff in the future will shift up the $RHS_m(z)$
- Increasing entry and decreasing exit today
- ► Trade grows in advance of liberalization
- ► Through law of motion trade will increase gradually

Permanent current

- ► Lowering tariff in the current will shift up the $RHS_m(z)$ and $LHS_m(z)$
- Combination of previous two shocks
- Increasing entry and decreasing exit today
- Trade grows by more on impact
- ► Through law of motion trade will increase gradually.

Uncertainty

- As in typical models with non-convexities, uncertainty matters [Dixit & Pindick, 94]. Consider
 - **1.** Current dispersion in productivity, $\sigma_z \uparrow$ [temporary]
 - Does not affect thresholds, but does affect distribution of ability today
 - $\blacktriangleright\,$ Thicker tails \rightarrow more entry and more exit
 - ► Volume of trade should increase since condition mean of productivity ↑
 - **2.** Future uncertainty/dispersion, $\sigma'_z \uparrow$ [permanent]
 - ► Shift up and flattening of the marginal gain curve
 - Entry and exit fall, ambiguous effect on trade today and in the future

Success and Challenges

- Successes
 - Persistent export participation (fact #1)
 - ► Low export and entry rates (facts #3,4)
 - ► Dynamic macro adjustment (fact #7)
- Challenges
 - New exporters (too productive at entry, too likely to continue, and export intensity too high)
 - Connection in exporting across markets
 - ► High re-entry rates in monthly and longer frequencies
- Causes
 - Exporting technology too simple (parsimonious): f_0, f_1, ξ
 - Need to shift more investment into post-entry period and reduce depreciation

Resolutions: Starting and stopping

- ► Small new-exporters & low continuation rate
 - ▶ Let $f_1(t_e)$ be a decreasing function of t_e =age in market
- High re-entry data
 - ▶ Annual: Let firm that stops re-enter with $f_R \in [f_1, f_0]$
 - Monthly: set $f_0 = f_1$, hold goods in inventories at a cost abroad

Resolution: Export intensity dynamics

- ► Modify iceberg cost structure so that they fall with experience
 - ► Alessandria (2013) assume enter at $\xi_H > \xi_L$ and then markov transition between states
 - ► Reflects improvements in export distribution technology
- Alternatively could accumulate customers or build habit (Fitzgerald et al., 2016; Piveteau, 2016; Ruhl and Willis, 2017; Rodrigue and Tan, 2019)
- Both approaches have investments in improving market after entry, not just maintaining access
- Backloads profits which leads to lower estimates of entry costs.
- ▶ When growth process is uncertain, this makes it more likely to exit

Extensions

- Input adjustment frictions
 - Slow down overall growth
 - Lower the value of exporting (all else equal, less participation)
 - If applied to both domestic and export production, do not effect export intensity dynamics
 - Physical capital adjustment (convex and nonconvex): Alessandria and Choi (2007), Riaño (2011), Rho and Rodrigue (2015), Rho and Rodrigue (2016)
 - Labor adjustment: Many static models with labor frictions
 Coşar et al. (2016) (search model + trade model), Fajgelbaum (2013)

- Importers
 - Do import dynamics suggest sunk costs and irreversible investments?
 - ▶ Yes. Lu et al. (2016), Ramanarayanan (2017), Imura (2019)
- Importers and exporters
 - Many exporters are also importers. Allow import sunk-costs, too.
 - Kasahara and Lapham (2013) estimate strong complementarity between the two activities — correlated sunk costs

Extensions

- Innovation and growth
 - Atkeson and Burstein (2010): innovation not important for aggregate exports; entry and innovation offset each other
 - ► Aw et al. (2011): estimate a model of R&D and find complementarity between innovation and exporting
 - Many models with static export decisions and dynamics from innovation. Potential to study innovation in models with dynamic exporting (Alvarez et al., 2013, Perla et al., 2013, Sampson, 2014).

- Financial frictions
 - Similar to input frictions: lowers value of exporting, creates second state variable for the firm (wealth); firms grow slowly
 - ▶ Kohn et al. (2016): working capital constraint
 - Brooks and Dovis (2019): endogenous vs. exogenous debt constraints imply different behavior. Data suggest endogenous debt constraints.

Extensions

- Learning: firm's can learn about their productivity or demand in the foreign country
 - Eaton et al. (2014), Timoshenko (2015), Arkolakis et al. (2018): Jovanovic-style learning within a market. Uncertainty means new exporters start small and many exit early. Those who find out they are good grow fast.
 - Albornoz et al. (2012), Schmeiser (2012): learning across markets leads to sequential export entry into markets.

General equilibrium

- ► Embed the firm-decision problem into general equilibrium
- ► Why general equilibrium?
 - Account for feedback through prices
 - ► Feedback typically dampens effects vis a vis partial equilibrium
- ► Also allow for free entry of firms, physical capital, intermediate goods

General equilibrium: Overview

- Two symmetric countries (Foreign with asterisk)
- ► Same policies, technologies, assets (μ , μ^* ,K,K*)
- ► GE models with international firm dynamics:
 - Alessandria & Choi (07, 14a, 14b), Ruhl (08), ACR (12), Impulliti, Irarrazabal, Oppromola (13JIE)
 - ▶ Imura (16), Steinberg (19), Mix (2019)
- ► With symmetric countries and trade liberalization, trade is balanced
 - Asymmetric countries or unilateral liberalization drive international capital flows
 - ► Alessandria et al. (2013)

► The differentiated-variety production function

$$\mathbf{y}_{i} = \left(\mathbf{z}\mathbf{k}_{i}^{\alpha}\ell_{i}^{1-\alpha}\right)^{1-\alpha_{x}}\mathbf{x}^{\alpha_{x}}$$

- ► k is physical capital
- ► *x* intermediate good (a composite of varieties)
- Inputs chosen flexibly

Final good production

- Constant returns to scale, perfect competition
- Firm (a good) state is $s = (z, \xi, f)$

$$Y_t = \left[\int y_{Ht}(s)^{\frac{\theta-1}{\theta}} \mu_t(s) \, ds + \int y_{Ft}(s)^{\frac{\theta-1}{\theta}} \mu_t^*(s) \, ds\right]^{\frac{\theta}{\theta-1}}$$

Final good used for consumption, physical capital investment, and intermediate goods (x)

$$Y_t = C_t + K_{t+1} - (1-\delta)K_t + X_t$$

Parametric elasticity is θ but this will not be the aggregate elasticity to a change in tariffs. The aggregate elasticity depends on the extensive margin response.

$$\max_{C_t, K_{t+1}} E \sum_{t=0}^{\infty} \beta^t \frac{C_t^{1-\sigma}}{1-\sigma}$$

s.t. $C_t + K_{t+1} = w_t L_t + (1 + r_t - \delta_k) K_t + T_t + \Pi_t$ $t = 0, 1, \dots$
 $C_t > 0, \ K_0 = \overline{K}$

- *L* is the household's labor endowment (L = 1,
- \blacktriangleright *r* is the rental rate of capital,
- ▶ w is the wage,
- ► *T* is the lump-sum rebate of tariff revenue,
- ► Π is the profit earned by domestic firms.

Calibration

- Calibrate the model to the United States in the early 1990s
- ► Assume the United States is in a stationary equilibrium
- ► Break the parameters space into two sets
 - Ones chosen without solving for the model's equilibrium
 - Ones that require solving for the model's equilibrium

External calibration

- Calibrate the model to the United States in the early 1990s
- ▶ Not calibrated, but common in the literature
 - ► $\theta = 5, \sigma = 1$
- Calibrated (target)
 - $\tau = 0.10$ (U.S. average tariff rate)
 - ▶ $\beta = 0.96$ (real interest rate)
 - $\delta_k = 0.1$ (U.S. physical capital depreciation rate)
 - $\alpha = 0.3$ (U.S. capital share in income)
 - $\alpha_x = 0.80 \text{ (U.S. } \frac{\text{gross ouput}}{\text{value added}})$

- Calibrated (target)
 - $\rho_z = 0.835, \sigma_z = 0.188$ (typical values)

A serious calibration fits an AR(1) to a panel of firm-level output data.

- ▶ $\mu_e = -0.296$ ()
- ▶ $\chi_0 = 13.47, \chi_1 = 2.17$ ()

Internal calibration

- Previous parameters common to many models
- ► Follow a method of simulated-moments procedure
- ▶ Moments are informative of the intensive and extensive margins
- ▶ No one-to-one mapping between moments and parameters

Moment	Value	Parameter	Calibrated value
Export-sales ratio	8.3	f _e	7.95
Participation rate	22.3	f_0/f_e	0.026
Exporter premium	2.8	ξ _H	1.88
Exporter intensity	13.1	ξL	1.09
Stopper rate	15.9	$ ho_{\xi}$	0.93

Export technology

Moment	Value	Parameter	Calibrated value
Export-sales ratio	8.3	f _e	7.95
Participation rate	22.3	f_0/f_e	0.026
Exporter premium	2.8	ξH	1.88
Exporter intensity	13.1	ξL	1.09
Stopper rate	15.9	$ ho_{\xi}$	0.93

- Cheap to create an exporter compared to creating a new plant
- Big difference between being a good and bad exporter
- Export type is persistent
- Exporter intensity driven by share of good and bad exporters
- ► Big picture: Large gain to becoming a good exporter. Not easy to do. → high stopper rates; low export participation

A tariff liberalization

- Start in stationary equilibrium
- Surprise cut in tariffs to $\tau = 0$ in both countries
- ► Perfect foresight for rest of time
- ► This is not how trade liberalization works!
 - ▶ Negotiated over time, phased in; sometimes unilateral
- Easy to phase-in a path of tariffs with perfect foresight
 - ► Here, focus on the firm dynamics; abstract from other sources
- More challenging to have uncertainty over liberalization and compute transition path
 - ▶ Worth trying to figure out...

Tariff liberalization

- ► Focus on Dynamic model (blue lines)
- Consumption overshoots its long-run level
- ► Aggregate trade share (1-domestic share) grows slowly

Tariff liberalization

- ► Exporters increase gradually, which feeds into aggregate dynamics
- Number of producers decreases
Trade liberalization with firm dynamics

- Initial equilibrium has too many firms
 - ► Imports are relatively expensive
 - ► Value variety, so create domestic firms
- Liberalization
 - Buy cheaper varieties from abroad
 - Need fewer domestic firms
 - ► Consume resources that would have gone to firm creation → overshooting in consumption
 - ► Takes time to build of exporters; aggregate trade grows slowly

Aggregate trade

- ▶ Initial jump downward is increase in trade on the intensive margin (θ)
- Slow change afterward is from 1) more exporters 2) exporters stay in market longer and more become good exporters
- Policy change induces change in export technology

A model without trade dynamics

- Static model except for capital accumulation
- Set $f_0 = f_1 = 0$; every firm exports
 - ► No extensive margin dynamics
 - ► No forward-looking decision
- Set $\xi_H = \xi_L = 1.62$ (match agg. export-sales ratio)
 - ► No intensive margin dynamics
 - ► Value consistent with the literature (home-bias)
- ► This is essentially Krugman (1980) with heterogeneous productivity

Tariff liberalization: Static

- Consumption grows monotonically and relatively fast
 - Close to long-run level after 25 periods
- Aggregate trade share jumps to new level
 - Short and long run elasticities are identical

Tariff liberalization: Static

- No change in exporters
- Number of producers temporarily dips but no long-run change

	Static exporters	Dynamic exporters
Long-run trade elast.	4.00	9.22
ΔC_{ss}	5.18	0.48
Δ Welfare	4.62	6.66
Δ Welfare/ ΔC_{ss}	0.89	13.81

- Static elasticity is $\theta 1$
- ► Dynamic elasticity captures exten. margin and better export tech.
- Static model delivers higher steady-state consumption...
- ▶ ... but Dynamic model has higher welfare (from overshooting)
- Static "sufficient-statistic" approach is not a good approximation to the dynamic model