International Trade and Macro: Solving PE sunk-cost models

Solving discrete models

- ► Goal: Solve and estimate a sunk-cost model
 - 1. Solve model
 - 2. Estimate model
- ► Focus on steps 1–3 for now

Algorithm

- 1. Initial set up
 - Set parameter values
 - ► Construct grids; Discretize continuous stochastic processes
 - Initialize policy and value functions
- 2. Solve decision problem
 - ► Value/policy function iteration to convergence
 - Key output: Policy functions
- 3. Create simulated panel of data
 - Set initial firm states; Draw sequences of shocks
 - ► Use policy functions to model firm behavior, record panel
 - Use panel to compute moments in simulated data
- 4. Compare model-moments to data-moments
 - ► If moments match, finished
 - ▶ If moments do not match, update parameters, return to step 2.

1. Initial setup

- Parameters
 - θ = elasticity of substitution in demand
 - τ = tariff (constant for now, could be stochastic)
 - β = discount factor
 - ► δ = survival probability
 - f_0, f_1 = export entry, continuation costs
 - A process for z (\bar{z} , ρ , σ_{ϵ})

$$\log(z') = (1 - \rho)\log(\bar{z}) + \rho\log(z) + \epsilon$$

 $\epsilon \sim \text{iid } N(0, \sigma_{\epsilon})$

► $\xi_H > \xi_L$ export variable costs (constant for now, could be stochastic)

1. Initial setup

- Construct a grid for z
 - Equally spaced points
 - ► Importance-weighted: Use CDF of ergotic distribution
- ► Use a Tauchen-like method to convert AR(1) to discrete Markov chain
- Initialize value and policy functions
 - $V^1(x, z, \xi)$ value function for exporter $(N_z \times N_\xi \times 2)$
 - $V^0(x, z, \xi)$ value function for non-exporter
 - $V(x, z, \xi)$ value of the firm (need two of these, old and new)
 - $X(x, z, \xi)$ export decision
- Initialize V to something like $(1 \beta)\pi(z, \xi)$
- Precompute and store $\pi(x, z, \xi)$
- Ancillary functions: *l*(*x*, *z*, *ξ*), *ex*(*z*, *ξ*). Compute after iteration converges.

2. Solve decision problem

► Value function iteration. Loop over *z_i*

$$V^{1}(x, z_{i}, \xi) = \pi(1, z, \xi) - xf_{1} - (1 - x)f_{0} + \beta \sum_{z_{j}} V_{old}(1, z_{j}, \xi) \operatorname{prob}(z_{j}|z)$$
$$V^{0}(x, z_{i}, \xi) = \pi(0, z, \xi) + \beta \sum_{z_{j}} V_{old}(0, z_{j}, \xi) \operatorname{prob}(z_{j}|z)$$
$$V_{new}(x, z_{i}, \xi) = \max \left\{ V^{1}(x, z_{i}, \xi), V^{0}(x, z_{i}, \xi) \right\}$$

- Check: $\|V_{\text{new}}(x, z_i, \xi) V_{\text{old}}(x, z_i, \xi)\|$
- ▶ If not converged, set $V_{old}(x, z_i, \xi) = V_{new}(x, z_i, \xi)$, repeat
- ▶ Once converged, compute $X(x, z_i, \xi)$, $I(x, z_i, \xi)$, $ex(z_i, \xi)$

3. Simulate a panel

- ▶ We have the decision rules...
- ► Want to create a panel data set of firms in the stationary distribution
 - **1.** t = 0: Create N_f firms, assign each a ξ and a z_0 ; all nonexporters
 - **2.** $t = 1, \ldots, t = T; f = 0, \ldots, N_f$
 - Draw a z_t for firm f (use ergodic dist and uniform random)
 - ► Compute export decision, production, exports, etc.
 - **3.** To avoid initial conditions problem, throw out first several hundred observations. Check that moments do not change (much) over the panel.
- ▶ Now we have a panel of data...
- ► If we structured out panel correctly we can **literally** use the same code we used on the data on the model panel.

Aggregate shocks

- ► No aggregate uncertainty here
- Make E_t an AR(1) process that affects all firms identically
- Need to discretize and add to the firm's state variables

$$V(x,z,\xi,E) = \pi(z,\xi,E) + \cdots + \sum_{z',E'}$$

 Easy to do in partial equilibrium; will typically overstate the effect of a foreign demand shock — price dynamics will attenuate