International Trade and Macro: Sunk-cost models in practice

Putting the model to work

- Sunk-cost models models have been used
 - ▶ To recover trade costs across time, industries, and countries
 - ► To study the response of exports, entry, etc. to changes in policy, shocks,...
- ► Today: Das et al. (2007)
 - ► A "structural IO" approach
 - Lots of heterogeneity
 - ► High-powered econometrics

Export profits

► Firm *i*, potential export profit

 $\log(\pi_{it}^*) = \psi_0 z_i + \psi_1 e_t + \nu_{it}$

- \blacktriangleright *z_i* = firm-specific, time-invariant characteristics
- $e_t = \log \text{ real exchange rate, follow AR(1) process}$
- ν_{it} = shocks to factor prices, productivity, demand,...
 - Model this as sum of m AR(1) processes
 - ► Let *x* be the components

- No data on export profit (no export production costs, just total)
- ► Cannot directly estimate the parameters

Some profit function math

• Assume monopolistic competition, $\eta_1 > 1$ is the elasticity

$$\pi_{it}^* = \eta_i^{-1} \times R_{it}^{f*}$$

► Take logs, substitute into LHS of profit function,

$$\log(\pmb{R}_{it}^{f*}) = \log(\eta_i) + \psi_0 \pmb{z}_i + \psi_1 \pmb{e}_t +
u_{it}$$

- ▶ Notice the extra heterogeneity in η_i
- This also introduces a "incidental parameters problem"
 - Assume that $\eta_i = (1 + \nu)\eta_i^d$, a bit more math...

$$1 - \frac{C_{it}}{R_{it}} = \eta_i^{-1} \left(1 + v \frac{R_{it}^d}{R_{it}} \right) + \xi_{it}$$

► Adds data on domestic revenue and costs, introduces *n* more equations and three (*ν*, *σ*_ξ, *λ*_ξ) new parameters

Fixed costs

- ▶ The "continuation cost:" $\gamma_F \epsilon_{1it}$
 - γ_F common across firms, ϵ_{1it} idiosyncratic
- ▶ The start-up cost: $\gamma_s z_i + \epsilon_{1it} \epsilon_{2it}$
 - ▶ γ_s vector of coefficients, z_i same characteristics in π
- Fixed cost shocks (ϵ) are
 - Normal, serially uncorrelated
 - Orthogonal to e and ν
- Let $y \in 0, 1$ be the export indicator

$$u() = \pi^{*}(e_{t}, x_{it}, z_{i}) - \gamma_{F} + \epsilon_{1it}$$
 if $y_{it} = 1$ and $y_{it-1} = 1$

$$u() = \pi^{*}(e_{t}, x_{it}, z_{i}) - \gamma_{F} - \gamma_{s}z_{i} + \epsilon_{2it}$$
 if $y_{it} = 1$ and $y_{it-1} = 0$

$$u() = 0$$
 if $y_{it} = 0$

The export decision

► The recursive problem is

$$V_{it} = \max_{y_{it}} u(e_t, x_{it}, z_i, \epsilon_{it}, y_{it}, y_{i,t-1|\theta}) + \delta E_t V_{it+1}$$

• Where θ is the parameter vector, δ is the discount rate, and

$$E_t V_{it+1} = \int_{e'} \int_{x'} \int_{\epsilon'} V_{it+1} \times f_e(e'|e_t, \theta) f_x(x'|x_{it}, \theta) f_\epsilon(\epsilon'|\epsilon_t, \theta) d\epsilon' dx' de'$$

Which generates the usual discrete-choice exporting rule

$$y_{it} = 1$$
 if $u(e_t, x_{it}, z_i, \epsilon_{it}, 1, y_{i,t-1|\theta}) + \delta \Delta E_t V_{it+1} > 0$

where

$$\Delta E_t V_{it+1} = E_t [V_{it+1} | y_{it} = 1] - E_t [V_{it+1} | y_{it} = 0]$$

Data

- ► Colombian firm-level data 1981–1991 ► $R_{it}^{f}, R_{it}^{d}, C_{it}, e_t, z_i$
- ► Focus on three industries: leather, knitted fabrics, basic chemicals
- ► Colombian export boom over this period (RER depreciation)
 - ► RER depreciates 33 percent
 - ▶ Exports grow: 26, 16, 19 percent per year
 - Export participation: $12 \rightarrow 18$, $50 \rightarrow 58$, $42 \rightarrow 50$

Identification

- ▶ η_i , *v*: variation in R_{it}/C_{it} , R_{it}^f/R_{it}
- ▶ ψ and x process params: variation in export revenue across plants and time
- Sunk cost params: export behavior of firms with similar potential export profits, but different export history
- ▶ fixed cost params: exit behavior of firms (given a sunk cost value)

- ► Estimation: MCMC
- Number of x = 2; $\delta = 0.9$,
- z_i = big and small by 1981 domestic revenues
- Exchange rate estimated directly from data

	Leather Products	Basic Chemicals	Knitted Fabrics	Priors
			Knitted Fabrics	FIIOIS
(Function Parameters	12.0(5.(2.059)	1 11(0 500)
ψ_{01} (intercept)	-13.645 (4.505)	1.143 (3.642)	-12.965 (3.058)	$\psi_{01} \sim N(0, 500)$
ψ_{02} (domestic size dummy)	1.544 (0.789)	1.862 (0.813)	1.362 (0.449)	$\psi_{02} \sim N(0, 500)$
ψ_1 (exchange rate coefficient)	4.323 (0.957)	0.975 (0.745)	4.047 (0.640)	$\psi_1 \sim N(0, 500)$
$\lambda_{\frac{3}{4}}^{1}$ (root, first AR process)	0.787 (0.180)	-0.383 (0.186)	0.458 (0.258)	$\lambda_{\frac{3}{2}}^1 \sim \mathrm{U}(-1, 1)$
λ ² _x (root, second AR process)	0.952 (0.018)	0.951 (0.022)	0.709 (0.103)	$\lambda_{x}^{2} \sim U(-1, 1)$
$\sigma_{\omega 1}^2$ (variance, first AR process)	0.282 (0.144)	0.320 (0.109)	0.469 (0.250)	$\ln(\sigma_{\omega 1}^2) \sim N(0, 20)$
$\sigma_{\omega^2}^2$ (variance, second AR process)	0.422 (0.146)	0.491 (0.137)	0.809 (0.264)	$\ln(\sigma_{\omega^2}^2) \sim N(0, 20)$
v (foreign elasticity premium)	-0.016 (0.022)	0.849 (0.126)	0.950 (0.047)	$v \sim U(-1, 1)$
λ_{ξ} (root, measurement error)	0.336 (0.070)	0.962 (0.011)	0.935 (0.013)	$\lambda_{\xi} \sim U(-1, 1)$
σ_{ξ} (std. error, ξ innovations)	0.011 (0.001)	1.277 (0.389)	1.312 (0.264)	$\ln(\sigma_{\xi}) \sim N(0, 20)$
	Foreign Deman	d Elasticities (quintiles only	0	
η_{O1} (demand elasticity, quintile 1)	8.020 (2.907)	12.098 (13.881)	10.289 (12.032)	$\ln(\eta - 1) \sim N(2, 1)$
η_{02} (demand elasticity, quintile 2)	12.282 (13.351)	12.974 (18.682)	12.314 (8.330)	$\ln(\eta - 1) \sim N(2, 1)$
η_{O3} (demand elasticity, quintile 3)	17.866 (11.089)	14.139 (13.363)	13.780 (16.725)	$\ln(n-1) \sim N(2,1)$
η_{Q4} (demand elasticity, quintile 4)	37.189 (25.331)	24.604 (27.253)	36.279 (32.844)	$\ln(\eta-1) \sim N(2,1)$
	Dynamic Di	screte Choice Parameters		
γ_{S_1} (sunk cost, size class 1)	63.690 (1.934)	62.223 (3.345)	61.064 (2.628)	$\gamma_{S_1} \sim N(0, 500)$
γ_{s} , (sunk cost, size class 2)	52.615 (4.398)	50.561 (5.043)	59.484 (2.361)	$\gamma_{s_2} \sim N(0, 500)$
γ_F (fixed cost)	-0.610 (1.042)	1.635 (0.983)	1.372 (1.340)	$\gamma_F \sim N(0, 500)$
σ_{e1} (std. error, ε_1)	12.854 (6.171)	7.517 (4.109)	32.240 (8.382)	$\ln(\sigma_{e1}) \sim N(0, 20)$
σ_{e2} (std. error, ε_2)	30.627 (7.831)	32.432 (3.196)	17.630 (4.737)	$\ln(\sigma_{e2}) \sim N(0, 20)$
	Initial C	onditions Parameters		
α_0 (intercept)	-3.559 (6.523)	-13.693 (7.069)	-40.811 (21.379)	$\alpha_0 \sim N(0, 500)$
α_1 (domestic size dummy)	16,484 (9,965)	25,868 (11,959)	23.397 (14.762)	$\alpha_1 \sim N(0, 500)$
$\alpha_2(x_1)$	29.388 (11.675)	-18.028 (11.658)	31.603 (18.165)	$\alpha_2 \sim N(0, 500)$
$\alpha_3(x_2)$	3.451 (4.861)	8.908 (5.710)	16.561 (15.519)	$\alpha_3 \sim N(0, 500)$

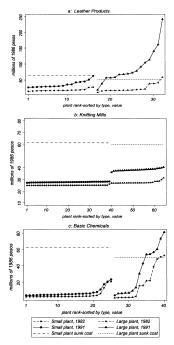
TABLE I Posterior Parameter Distributions (Means and Standard Deviations)

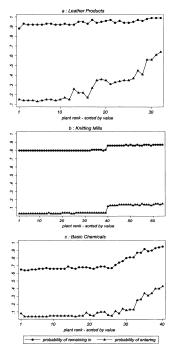
Profit function parameter estimates

- Big firms earn bigger export profits
- ► Leather and knitted have big RER elasticity
- Strong serial correlation in plant shocks (λ_x)
- ► Average elasticities: 14.2, 13.0, 12.7
- $\eta = \eta^d (1 + v)$; for chem and knits, foreign markets are tougher

Fixed cost estimates

- Entry costs
 - ► Small producers \$412k-430k
 - ► Large producers \$344k-402k
 - ► These are big!
 - Actual entry costs paid are lower: Enter when ϵ draws are favorable
- Fixed costs
 - Close to zero
 - Large standard deviation—fixed cost matter sometimes





This version: September 22, 2021

FIGURE 2.-Probability of exporting conditional on plant history.

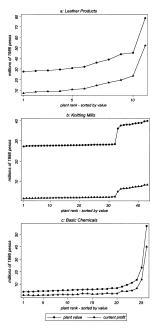
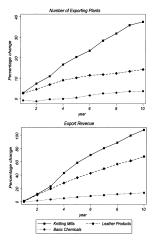


FIGURE 3.-Value of exporting and current profit for nonexporting plants.



IGURE 4 .--- Export response to a correctly perceived 20 percent devaluation.

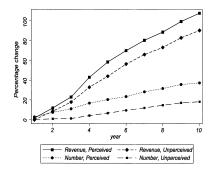


FIGURE 5.—Response to a perceived versus unperceived regime shift: 20 percent steady state devaluation, knitting mills.

References

Das, Sanghamitra, Mark J. Roberts, and James R. Tybout (2007). "Market entry costs, producer heterogeneity, and export dynamics." *Econometrica* 75 (3), pp. 837–873.