International Trade and Macro: Exporter Dynamic models

Model and Trade Costs

1. Focus on how models have been used to recover trade costs across time, industries, and countries.

Model outline

- Basic Model (Das et al., 2007; Alessandria and Choi, 2007; Alessandria and Choi, 2014b; Alessandria and Choi, 2014a)
- **2.** Relaxing the trade cost assumptions (Ruhl and Willis, 2017; Alessandria et al., 2021; Alessandria and Avila, 2020)
- Customer accumulation (Fitzgerald et al., 2016; Piveteau, 2021; Ruhl and Willis, 2017; Rodrigue and Tan, 2019; McCallum, 1995; Steinberg, 2021)

Das, Roberts & Tybout (2007)

- 1. Estimation of Sunk cost model for three Colombian industries in 1981-1991 period.
- **2.** IO approach adds lots of heterogeneity and focus on the paths of individual firms.
- 3. Brings in uncertainty from exchange rate
- 4. Key output: Estimates of export fixed and sunk costs

▶ We cover the details in a separate set of slides...

Alessandria and Choi (2007)

- 1. Studies cyclical properties in RBC model from shocks to productivity
 - Uses perturbation methods to study cyclical movements in export behavior and net trade flows from shocks to aggregate productivity.
- 2. Sunk cost model with heterogeneous producers in GE
 - ► No firm entry creation/death.
 - ► IID idiosyncratic productivity shocks
 - Export decisions within same period
 - Firms make investments in capital prior to knowing idiosyncratic productivity.

- Much less heterogeneity than Das et al. (2007)
- ► Recover similar export costs

Exporter characteristics for calibration

- ▶ Bernard & Jensen (95, 99, 01) using Census LRD (84–92)
- 1. Not all firms export
 - ► Less than 50% of U.S. plants in LRD
 - ► Less than 20% in Census of Mfrs
- 2. Exporters are:
 - ▶ Bigger 100% more shipments, 90% more employees
 - ▶ More Productive 12 to 18% higher TFP
 - ► Larger exporter premia in Census of Mfrs (Bernard, et al. 02)
- 3. Change identity, annually
 - ▶ 14% of non-exporters STARTED exporting
 - ▶ 13% of exporters STOPPED exporting

Calibration: trade costs

Variables	BJ (99,01)	Model
Import share Starters (n_0) Stoppers $(1 - n_1)$ $ln \frac{A_x}{A_N}$	0.15 0.036 0.032 0.12 to 0.18	0.15 0.035 0.035 0.154
$\ln \frac{Y_X}{Y_N} \\ \ln \frac{L_X}{L_N}$	0.952 to 1.139 0.776 to 0.952	0.902 0.902

▶ $f_0/f_1 = 4.8$

- \blacktriangleright New exporter: entry costs \approx 16.5% of sales
- \blacktriangleright Continuing exporter: trade cost $\approx 1.7\%$ of sales
- $\blacktriangleright\,$ Total trade costs \approx 1.3% of GDP

Exporter premium: Gross output vs. value added

- Exporter premium is too dependant on foreign sales. Consider the extreme case where exporting is exogneous. Export intensity has to do all the work since there is no selection.
 - Suppose trade is 15% of GDP & 1/2 firms export exogenously.
 - Exporters and non-exporters both sell 42.5 of GDP. Export intensity is 15/(42.5 + 15) = 26%, which is too high.
- Can fix by allowing for an input-output set up

$$y(i) = e^{z} e^{\eta} \left(k^{\alpha} l^{1-\alpha} \right)^{1-\alpha_{x}} M^{\alpha_{x}}$$

$$Y = c + \int x(i)di + \int M(i)di$$

▶ If gross output to value added $\left(\frac{Y}{(c+\int x(i)di)}\right) = 3$, export intensity is 15/(142.5+15) = 9.5%.

Exporter premium: Export persistence

- ► With endogenous exporting, exporters premium from:
 - Supply: selection on productivity + capital (forward looking)
 - Demand: export more intensively (demand)
- Persistence of exporting influences exporter premium through offsetting selection & capital deepening effects.
- ► Very high export persistence.
 - Entry and exit thresholds are far apart. Selection is weak. Incentive to accumulate capital is strong.
- Very low export persistence. (iid)
 - Entry and exit thresholds are the same. Strict sorting on productivity. No incentive to make investments.

Alessandria and Choi (2014a)

- 1. Sunk cost model with heterogeneous producers in GE
 - ► Firm entry creation/death.
 - Persistent idiosyncratic productivity shocks
 - Shocks to fixed export costs σ_v
 - ► Capital and Materials in production
 - Lag between fixed costs and market access
- 2. Focus: aggregate implications of changes in trade policy in the presence of firm exporter dynamics (transitions & steady states).
 - ► Two sectors (tradable, non-tradable)
 - ► No aggregate shocks beyond trade costs.
- 3. Good example of calibrating to aggregate economy

Tradable Producer (z,v,m)

- For *t*, given markets, $m = \{0, 1\}$, max $\Pi_{T,t}(z, m, v)$
- ► For t + 1, invest in exporting, m' = {0, 1} Current profits:

$$\Pi_{T,t}(\cdot) = \max \frac{P_{H,t}(\cdot) y_{H,t}(\cdot)}{P_t} + m \frac{e_t P_{H,t}^*(\cdot) y_{H,t}^*(\cdot)}{P_t} - W_t I_{T,t}(\cdot) - R_t k_{T,t}(\cdot) - P_{T,t} x(\cdot),$$

s.t.
$$y_{H} + (1 + \xi) y_{H}^{*} = e^{z} \left[k_{T} (\cdot)^{\alpha} l_{T} (\cdot)^{1-\alpha} \right]^{1-\alpha_{x}} x_{T} (\cdot)^{\alpha_{x}}$$

$$\Rightarrow P_{T,t}(z,m), P_{T,t}^{*}(z,m), k_{T,t}(z,m), l_{T,t}(z,m), x_{T,t}(z,m)$$

$$V_{T,t}(z, v, m) = \Pi_{T,t}(z, m) + \max \{V_t^1(z, v, m), V_t^0(z, v, m)\}$$

$$V_{t}^{1}(z, v, m) = -W_{t}f_{m}e^{v} + n_{s}(z) EQ_{t}V_{T,t+1}(z', v', 1|z),$$

$$V_t^0(z, v, m) = n_s(z) Q_t V_{T,t+1}(z', v', 0|z)$$

 \Rightarrow *m*^{*t*}_{*t*}(*z*, *v*, *m*) depends on *z*_{*m*,*t*}(*v*)

Calibration: Aggregates

Para	imeter	Value
$egin{array}{c} \sigma \ \delta \ eta \end{array}$	IES Capital Depreciation Disounting	2 0.10 0.96
$egin{array}{c} heta \ heta \ au \ \xi \end{array}$	Elasticity of Subst. (Broda & Weinstein) Tariff (Anderson and van Wincoop) Iceberg cost (export intensity = 13.3%)	5 0.08 0.45
$\gamma \\ \alpha_{\mathbf{X}} \\ \alpha$	MFR VA/(Private GDP) = 21% MFR Gross Output/MFR VA = 2.8 Capital share of income = 34%	0.21 0.804 0.286

Calibration: Establishment heterogeneity

$$\phi(\mathbf{Z}'|\mathbf{Z}): \mathbf{Z}' = \rho \mathbf{Z} + \varepsilon, \varepsilon \sim N(\mathbf{0}, \sigma_{\varepsilon}^{2})$$

$$\phi_{\mathsf{E}}\left(\mathsf{z}
ight):\mathsf{z}'=-\mu_{\mathsf{E}}+arepsilon,arepsilon_{\mathsf{E}}\sim\mathsf{N}\left(\mathsf{0},rac{\sigma_{arepsilon}^{2}}{\mathsf{1}-
ho^{2}}
ight)$$

$$n_{d}(z):1-n_{s}(z)=\max\left\{0,\min\left\{\lambda e^{-\lambda e^{z}}+n_{d0},1\right\}\right\}$$

$$\Rightarrow$$
 8 parameters $\{f_0, f_1, \sigma_v^2, \lambda, n_{d0}, \mu_E, \rho, \sigma_e^2\}$

Calibration: Establishments & exporters

- Exporter dynamics and characteristics:
 - 1. Overall participation rate = 22.3 % (92 Census of Mfrs.)
 - 2. Stopper rate = 17 % (ASM, 84 to 92)
- ► Establishment heterogeneity:
 - 3. Entrant 5-yr survival 37 % (Dunne et al. 89)
 - 4. Birth labor share =1.5 % (Davis, et al. 96)
 - 5. Exit labor share = 2.3 % (Davis, et al. 96)
 - 6. Establishment and employment distribution (92 Census)
 - 7. Establishment exporter distribution (92 Census)

Calibration

- Consider 4 variants
 - 1. Sunk-Cost
 - **2.** No-Cost/Krugman ($f_1 = f_0 = 0$)
 - **3.** Fixed-Cost $(f_0 = f_1)$
 - Identify role of sunk costs
 - **4.** Permanent ($\rho = 1, \mu_E = 0, f_1 = f_0$)
 - Benchmark formulation in literature
 - ► Identify role of plant dynamics

Matching participation & churning

	Data	Sunk- Cost	Fixed- Cost	Perm.	No- Cost
5-year exit rate	37	37	37	11	37
Startups' labor share	1.5	1.5	1.5	2.1	1.5
Shutdowns' labor share	2.3	2.3	2.3	2.3	2.3
Stopper rate	17	17	67	69	0
Exporter ratio	22.3	22.3	22.3	22.3	100
Trade Share	3.9	3.9	3.9	3.9	3.9
Root Mean Squared Error (%)					
Overall fit	-	1.55	1.56	3.25	5.26
Establishments	-	0.37	0.37	0.92	1.07
Employment share	-	0.76	0.77	0.62	1.16
Export participation	-	2.49	2.51	5.16	8.46

				Costs Incurrred	
	ξ	$\frac{f_0}{f_1}$	σ_{V}	$\frac{mean(f_0 e^v)}{mean(f_0 e^v)}$	$\frac{median(f_0 e^v)}{median(f_0 e^v)}$
Sunk-Cost	0.451	19	1.1	3.7	4.5
Permanent	0.451	1	3.6	0.5	1
No Cost	0.757	-	-	-	-

- ► Tariff equivalent: raises export cost by about 30 percentage points (≈40% of trade costs)
- Startup costs are 4 times profits of median starter
 - ▶ Das, Roberts, and Tybout (07) find 8-9 for Columbian plants
 - ▶ 750k (\$1992)

Costs as Share of Export Profits			
Model	Startup	Continuation	
Sunk-Cost	0.25	0.28	
Permanent-Fixed	0	0.20	
No-Cost	0	0	

Sizeable share of export profits (trade) are "organizational rents" to exporter decision not plant creation.

Micro-Dynamics: Successes, Failures, and Fixes

- Basic model captures exporter cross-section and dynamics, but what about other features?
- 1. Employment & Sales Growth w Changes in Export Status
 - ▶ Bernard & Jensen (99): growth rates vary w Δ in status.
- 2. Export Persistence at Longer Horizons
 - ▶ Frequent re-entry: Roberts & Tybout (97), Bernard & Jensen (04)
- 3. New Exporter Growth
 - Export intensity grows w time in market (Ruhl & Willis 08)

Resolution: Export intensity dynamics

With CES

$$exs(z,\hat{\xi}) = rac{(au\xi\hat{\xi})^{1-\sigma}}{1+(au\xi\hat{\xi})^{1-\sigma}}$$

- Modify iceberg cost structure so that they fall with experience reflects improvements in export distribution technology.
 - ► Ruhl and Willis (2017) assume firm enters at ξ_0 and then ξ_a is falling with *a*.
 - ► Alessandria et al. (2021) assume firm enters at $\xi_0 = \xi_H > \xi_L$ and then Markov transition between states
 - Both approaches have investments in improving market after entry, not just maintaining access
 - ► Back loads profits => lowers estimates of entry costs.
 - ▶ With uncertain growth this increases exit

Resolution: Export intensity dynamics

 Alternatively could accumulate customers or build habit (Drozd and Nosal, 2012; Fitzgerald et al., 2016; Piveteau, 2021; Rodrigue and Tan, 2019)

Customer-acquisition models of exporter dynamics

Demand for firm's product depends on price (*p*), trade cost (*τ*), and customer base (*m*):

$$d(\pmb{p},\pmb{m}; au)=(\pmb{p} au)^{- heta}\pmb{m}^{lpha}$$

- $\blacktriangleright \ \alpha$ governs diminishing returns to having more customers
- Firms heterogeneous in productivity (z)
- Assume constant-markup pricing so that flow profits from exporting given by

$$\pi({\it z},{\it m}; au) \propto ({\it z}/ au)^{1- heta}{\it m}^lpha$$

- Firm's problem: choose to export/not export to maximize PDV of profits—and possibly, choose how many customers to acquire
- Q: How to model customer aquisition?

Customer-acquisition models of exporter dynamics

- ► Fitzgerald et al. (2019, 2021): Quadratic adjustment cost
- ▶ Piveteau (2020): Word-of-mouth
- Steinberg (2021): Dynamic version of Arkolakis (2010)
- Customer acquisition in other contexts
 - Arkolakis (2010), EKK (2011): static models of how/why exporter distribution varies across bilateral trade relationships
 - Drozd-Nosal (2021): pricing to market, int'l macro puzzles
- Many other papers in which firms initially charge low prices to attract customers; focus on constant-markup models today
 - See Fitzgerald et al. (2019, 2021) for good review of both approaches

Fitzgerald et al. (2019, 2021)

- Pay sunk cost s to start exporting with <u>m</u> initial customers (exogenous)
- ▶ Pay fixed cost *f* to continue exporting; if not, lose all customers
- Customer base depreciates at rate δ, grows by investment a

$$m' = (1 - \delta)m + a$$

Cost of investment:

$$c(m,a) = a + \phi a^2/m$$

▶ Dynamic program (V^0 : potential exporter, V^1 : incumbent):

$$V^{0}(z) = \max \left\{ \mathbb{E}V^{0}(z'), \pi(z, \underline{m}; \tau) - f + \mathbb{E}V^{1}(z', \underline{m}) \right\}$$

$$V^{1}(z) = \max \left\{ \mathbb{E}V^{0}(z'), \max_{m} \left[\pi(z, (1 - \delta)m + a; \tau) - s - c(m, a) + \mathbb{E}V^{1}(z', (1 - \delta)m + a; \tau) - s - c(m, a) + \mathbb{E}V^{1}($$

Piveteau (2020)

- Pay sunk cost s to start exporting with <u>m</u> initial customers (exogenous)
- ▶ Pay fixed cost *f* to continue exporting; if not, lose all customers
- Customer base growth depends on sales and size of current customer base ("word of mouth")

$$m' = 1 - \{1 - \eta_1(1 - \psi)pd(p, m; \tau) - \eta_2(1 - \psi)m\}^{\frac{1}{1 - \psi}} \in (0, 1)$$

 No cost of investment (in paper firm can also grow customer base by charging lower prices, and therefore selling more than under constant-markup pricing)

$$V^{0}(z) = \max \left\{ \mathbb{E} V^{0}(z'), \pi(z, \underline{m}; \tau) - f + \mathbb{E} V^{1}(z', \underline{m}) \right\}$$
$$V^{1}(z) = \max \left\{ \mathbb{E} V^{0}(z'), \pi(z, m'; \tau) - s + \mathbb{E} V^{1}(z', m') \right\}$$

Steinberg (2021): market penetration dynamics

- No sunk or fixed costs, initial customer base endogenous
- Customer base evolves according to m' = n + o, where
 - ▶ $n \in [0, 1 m]$: new customers attracted
 - ▶ $o \in [0, m]$ old customers retained
- Attraction/retention costs depend on current customer base:

$$a_n(m,n) = \frac{L^{\alpha_n}(1-m)^{\beta_n}}{\psi_n(1-\gamma_n)} \left[1 - \left(\frac{1-m-n}{1-m}\right)^{1-\gamma_n} \right]$$
$$a_o(m,o) = \frac{L^{\alpha_o}m^{\beta_o}}{\psi_o(1-\gamma_o)} \left[1 - \left(\frac{m-o}{m}\right)^{1-\gamma_o} \right]$$

▶ Given current customer base *m*, cost of getting to *m*' given by

$$f(m,m') = \min_{n,o} \{a_n(m,n) + a_o(m,o)\}$$
 s.t. $0 \le n \le 1-m, 0 \le o \le m,$

Value function:

$$V(z,m) = \max_{m'} \left\{ \pi(z,m') - f(m,m') + \frac{\delta(z)}{1+R} \mathbb{E}\left[V(z',m')|x,z\right] \right\}$$

Solution: $\underbrace{f_2(m,m')}_{\text{marginal cost}} \ge \underbrace{\tilde{\pi}z^{\theta-1}}_{\text{marginal profit}} - \underbrace{\frac{\delta(z)}{1+R} \mathbb{E}\left[f_1(m',m'')|z\right]}_{\mathbb{E}[\downarrow] \text{ in future exporting cost}}$
$$\bullet \text{ If } m = 0, \text{ enter if } z \ge \underline{z}:$$

 $f_2(0,0) = \widetilde{\pi}\underline{z}^{\theta-1} - \frac{\delta(z)}{1+R} \mathbb{E}\left[f_1(0,m'')|z\right]$
$$\bullet \text{ If } m > 0, \text{ exit if } m \le \underline{m}(z):$$

$$f_2(\underline{\mathrm{m}}(z),0) = ilde{\pi} z^{ heta-1} - rac{\delta(z)}{1+R} \mathbb{E}\left[f_1(0,m'')|z
ight]$$

Steinberg (2021): key properties

- f₂(m,0) > 0: marginal cost of serving a single customer strictly positive ⇒ entry + exit
- ► f₂₂(m, m') > 0: MC increasing in size of new customer base ⇒ concentration
- - f₂(0, m') > f₂(m, m'): Entrant's MC curve entrants higher than incumbent's ⇒ entrants start small then grow
 - *f*₂(0,0) > *f*₂(*m*,0): Entrant's MC of acquiring single new customer higher than incumbent's MC of keeping single old customer ⇒ exit rate ↓ in *m*

Steinberg (2021): Calibrated exporting costs

Levels:

- Easy dests: flat w/ time in a market
- Higher for more successful exporters

Relative to profits:

- $\blacktriangleright \downarrow w$ / time in a market
- ► More pronounced ↓ in easy dests.
- ▶ f₂(m, m')/(LY) ↓ in L, Y ⇒ variation in exporter dynamics across markets

Complementary investments

- 1. Destinations (Albornoz et al., 2012; Albornoz et al., 2016; Morales et al., 2019)
- 2. Importing and Exporting (Kasahara and Lapham, 2013)

Trade Costs and Development

1. Developmpent(Fernandes et al., 2016)

References I

- Albornoz, Facundo, Sebastián Fanelli, and Juan Carlos Hallak (2016). "Survival in export markets." Journal of International Economics 102, pp. 262 –281.
- Albornoz, Facundo et al. (2012). "Sequential exporting." *Journal of International Economics* 88 (1), pp. 17–31.
- Alessandria, George and Oscar Avila (2020). "Trade Integration in Colombia: A Dynamic General Equilibrium Study with New Exporter Dynamics." *Journal of Economic Dynamics and Control* 115. St. Louis Fed -JEDC-SCG-SNB-UniBern Conference, titled "Disaggregate Data and Macroeconomic Models", p. 103871.
- Alessandria, George and Horag Choi (2007). "Do sunk costs of exporting matter for net exports dynamics?" *Quarterly Journal of Economics* 122 (1), pp. 289–336.
- (2014a). "Do falling iceberg costs explain recent U.S. export growth?" *Journal of International Economics* 94 (2), pp. 311–325.
- (2014b). "Establishment heterogeneity, exporter dynamics, and the effects of trade liberalization." *Journal of International Economics* 94 (2), pp. 207–223.
- Alessandria, George, Horag Choi, and Kim J. Ruhl (2021). "Trade adjustment dynamics and the welfare gains from trade." *Journal of International Economics* 131, pp. 1034–58.
- Das, Sanghamitra, Mark J. Roberts, and James R. Tybout (2007). "Market entry costs, producer heterogeneity, and export dynamics." *Econometrica* 75 (3), pp. 837–873.

References II

- Drozd, Lukasz A. and Jaromir B. Nosal (2012). "Understanding international prices: Customers as capital." *The American Economic Review* 102 (1), pp. 364–395.
- Fernandes, Ana M., Caroline Freund, and Martha Denisse Pierola (2016). "Exporter behavior, country size and stage of development: Evidence from the exporter dynamics database." *Journal of Development Economics* 119, pp. 121–137.
- Fitzgerald, Doireann, Stefanie Haller, and Yaniv Yedid-Levi (2016). "How exporters grow." NBER Working Paper 21935.
- Kasahara, Hiroyuki and Beverly Lapham (2013). "Productivity and the decision to import and export: Theory and evidence." *Journal of international Economics* 89 (2), pp. 297–316.
- McCallum, John (1995). "National Borders Matter: Canada-U.S. Regional Trade Patterns." American Economic Review 85 (3), pp. 615–23.
- Morales, Eduardo, Gloria Sheu, and Andrés Zahler (2019). "Extended gravity." *The Review of Economic Studies*.
- Piveteau, Paul (2021). "An empirical dynamic model of trade with consumer accumulation." AEJ: Macro, forthcoming.
- Rodrigue, Joel and Yong Tan (2019). "Price, product quality, and exporter Dynamics: Evidence from China." *International Economic Review* 60 (4).
- Ruhl, Kim J. and Jonathan L. Willis (2017). "New exporter dynamics." International Economic Review 58 (3), pp. 703–726.

Steinberg, Joseph B. (2021). "Export Market Penetration Dynamics." Unpublished manuscript.