International trade and macro: Trade policy uncertainty

Policy uncertainty

- Policy uncertainty is everywhere
 - ▶ Will we be wearing masks next month?
 - ▶ What will the corporate tax be in 5 years?
 - ▶ Will Madison metro build a Bus Rapid Transit line?
 - ▶ Will the Fed raise the FFR?
- Trade policy has some unique features that makes it great to study. Two examples:
 - 1. WTO tariff bindings
 - 2. China-U.S. (pre-2018) tariff policy

WTO tariff bindings

- ▶ Under WTO rules, bargain over a bound tariff: $\bar{\tau}_{git}$
 - Tariff cannot exceed this rate; can be below
 - Many countries have goods with tariffs below bound rate
 - The binding gap is $\bar{\tau}_{gjt} \tau_{gjt}$
- ► The gap tells us how much worse it could get for an exporter
- When there are sunk costs of exporting, uncertainty over a binding reversal creates an option value to delay exporting
 - ► This is an extensive margin effect
 - ▶ Future tariffs, not current are important here
- There is some confusion about language in this literature. The "uncertainty" they are talking about is not a mean preserving spread. There are first-moment differences, too.

Handley (2014): Australia

Notes: Change in log points from the MFN tariff to the bound tariff in 2001. $100 \times \ln(B_v/\tau_v)$ where $B, \tau = (1 + \text{ad-valorem rate})$.

Handley (2014): Australia

Handley (2014): Australia

$$I_{gjt} = \alpha_{jt} + \alpha_{gj} + \beta_0 \log(\bar{\tau}_{gjt}/\tau_{gjt}) + \beta_1 \log(\tau_{gjt}) + \epsilon_{gjt}$$

I_{ait} indicator function of exports of *g* from *j*

Dependent variable: product traded (binary)				
	(1)	(2)	(3)	
Binding gap (ln)	-0.0804***	-0.0915***		
	[0.00819]	[0.00888]	***	
Applied tariff (ln)	-0.135	-0.164	-0.0942	
	[0.0101]	[0.0126]	[0.0107]	
Preference margin		0.143	0.0371	
		[0.0289]	[0.0267]	
Observations	3,770,862	3,770,862	3,770,862	
R-squared	0.796	0.796	0.796	

Notes: All columns include exporter-year and exporter-product fixed effects. Robust standard errors in brackets are clustered by product-year. 0.04

ىك بك بك

China-U.S.

- ▶ 1980: U.S. grants China normal trade relations (NTR), big tariff cut
- ▶ 1980-1989: NTR needs to be renewed by President
- ► 1990-2001: NTR needs to also be renewed by Congress
 - Perceived as increase in uncertainty...
 - ▶ ... but always renewed
- ▶ 2001: China joins WTO, gains permanent NTR status
- Chinese imports to U.S. grow after 2001, even though tariffs do not change
- NTR gap is the difference between the NTR tariffs and the fall back "column 2" tariffs

Pierce and Schott (2016): US tariffs on China

FIGURE 2. DISTRIBUTION OF NTR GAPS ACROSS CONSTANT MANUFACTURING INDUSTRIES, 1999

Pierce and Schott (2016): US tariffs on China

- $\blacktriangleright\,$ WTO accession \rightarrow more imports to US \rightarrow lower US employment
- Should matter more in goods with more uncertainty (large NTR gap)
- DiD: before after PNTR, across industries with different gaps

 $\log(e_{it}) = \theta PostPNTR_t \times NTRGap_i + PostPNTR_t \times X'_i \gamma + X'_{it} \lambda + \delta_t + \delta_i + \alpha + \epsilon_{it}$

Pierce and Schott (2016): US tariffs on China

	ln(Emp _{it})	ln(Emp _{it})	ln(Emp _{it})
$Post \times NTR Gap_i$	-0.714 (0.193)	-0.601 (0.191)	-0.469 (0.147)
$\text{Post} \times \ln(\text{K}/\text{Emp}_{i,1990})$		0.037 (0.031)	-0.016 (0.025)
$Post \times ln(NP/Emp_{i,1990})$		0.081 (0.054)	0.132 (0.053)
Post \times Contract Intensity _i			-0.181 (0.112)
$\text{Post} \times \Delta \text{China Import Tariffs}_i$			-0.244 (0.140)
$Post \times \Delta China Subsidies_i$			0.063 (0.088)
$Post \times \Delta China \ Licensing_i$			-0.238 (0.164)
Post \times 1{Advanced Technology _i }			-0.036 (0.045)
MFA Exposure _{it}			-0.342 (0.060)
NTR _{it}			-0.455 (0.670)
US Union Membership _{it}			-0.123 (0.203)
Observations R^2	5,700 0.98	5,700 0.98	5,700
Fixed effects	<i>i,t</i>	i,t	<i>i,t</i>
Employment weighted Implied impact of PNTR	Yes -0.229	Yes -0.193	Yes -0.151

Alessandria et al. (2019)

- Same U.S.-China uncertainty, but take advantage of the within-year dynamics
 - Congress votes between July and September to renew NTR status
- ► How do imports change in the months before, during after?
 - Consider a model with storable goods and costs of ordering
 - ► Firms hold inventories to minimize ordering costs
 - Uncertainty can lead to stockpiling of goods

▶ More DiD...

$$\log(\mathbf{v}_{m-2:m}^{ijzt} / \mathbf{v}_{m-7:m-5}^{ijzt}) = \sum_{m'} \beta_{m'}^{TPU} \mathbf{I}_{i=US,j=CHN} \mathbf{I}_{m=m'} \mathbf{X}_{zt}$$
$$+ \sum_{m'} \beta_{m'} \mathbf{I}_{m=m'} \mathbf{X}_{zt}$$
$$+ \gamma_{itm} + \gamma_{jtm} + \gamma_{sm} + \epsilon_{ijztm}$$

- The growth rate looks at 3-month groups to smooth noise
- $\beta_{m'}^{TPU}$ measures the response to uncertainty (X_{zt} is NTR gap)
- Fixed effects to control for product, importer, and exporter seasonality

▶ This should matter more for goods that are easier to store

Magnitude: Certain vs Uncertain Changes

- ▶ Median uncertain tariff increase, 31% relative to monthly average
 - Before uncertainty resolution, imports rise 10% (anticipatory elasticity = 0.35)
 - ► After resolution imports fall 5% (resolution elasticity = -0.2)
- Median certain tariff cut of 2% from NAFTA's phase-outs (Khan and Khederlarian, 2019)
 - ► Before resolution, imports fall 10% (anticipatory elasticity = 5)
 - ► After resolution imports rise 15% (resolution elasticity = 7.5)

Quantification

- Using a model to estimate the probability of losing NTR
- ► The higher the probability of losing NTR, more incentive to stock up
- ▶ Will study the model in detail in a few weeks
 - Storeable good
 - Fixed cost of ordering
 - Firm faces a potential increase in tariffs, with varying probability
- Find the probability that gets the change in imports in the model closest to the data

Annual probability of maintaining NTR

Interesting stuff!

- ▶ We learn a lot from these unique tariff uncertainty episodes
- Are there more examples that can be used?
- ► Are their examples like this in other kinds of policy?
 - Debt ceiling negotiations?
 - Sunset clauses in antidumping duties?

- ▶ There is always a caveat...
 - NTR gap is correlated with the original liberalization in 1980
 - ► Explore this in Alessandria et al. (2021)

References I

- Alessandria, George, Shafaat Y. Khan, and Armen Khederlarian (2019). "Taking stock of trade policy uncertainty: Evidence from China's pre-WTO accession." Unpublished manuscript.
- Alessandria, George et al. (2021). "Trade-policy dynamics: Evidence from 60 years of U.S.-China trade." Unpublished manuscript.
- Handley, Kyle (2014). "Exporting under trade policy uncertainty: Theory and evidence." Journal of International Economics 94 (1), pp. 50–66.
- Khan, Shafaat Y. and Armen Khederlarian (2019). "How trade responds to anticipated tariff Changes: Evidence from NAFTA." Unpublished manuscript.
- Pierce, Justin R. and Peter K. Schott (2016). "The Surprisingly Swift Decline of US Manufacturing Employment." American Economic Review 106 (7), pp. 1632–62.