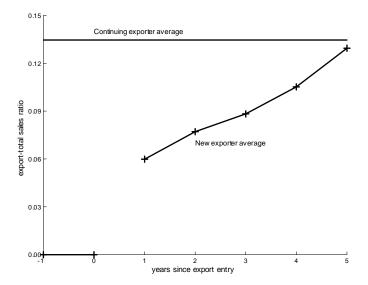
International Trade and Macro: Calibrating sunk-cost models (and GE)

Success and Challenges

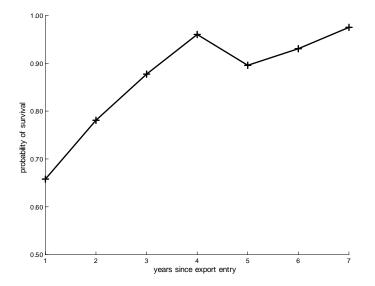
- Successes
 - Persistent export participation (fact #1)
 - ► Low export and entry rates (facts #3,4)
 - Dynamic macro adjustment (fact #7)
- ► Challenges
 - New exporters (too productive at entry, too likely to continue, export intensity too high)
 - Connection in exporting across markets
 - ► High re-entry rates in monthly and longer frequencies
- Causes
 - Exporting technology too simple (parsimonious): f_0, f_1, ξ
 - ► Need to shift more investment into post-entry period and reduce depreciation

Micro exporter facts

- 1. Not all plants export (22% in US)
- 2. Exporters are relatively large (5x larger)
- 3. Exporting is persistent (83% survival)


Micro exporter facts

- 1. Not all plants export (22% in US)
- 2. Exporters are relatively large (5x larger)
- 3. Exporting is persistent (83% survival)
- 4. New exporters start with low export intensity


 $exs_{it} = exports_{it}/total sales_{it}$

- 5. New exporters take time (5yrs) to get to average exporter levels
- 6. New exporters have high exit rates

Export intensity of Colombian exporters (Ruhl & Willis, 17)

Survival probability of Colombian new exporters (Ruhl & Willis, 17)

Today's goals

- 1. Focus on fixing the new exporter dynamics. In standard sunk-cost model, new exporters are (compared to data)
 - $\blacktriangleright \text{ Too productive} \rightarrow \text{too big}$
 - Export too much
 - ► Too likely to continue
- 2. Embed the firm choice problem into GE
- 3. Discuss calibration
- 4. Quantitative analysis of trade liberalization. Do exporter life cycles matter?
- 5. Other ways to add exporter life cycle dynamics

▶ Will largely follow Alessandria et al. (2021)

Model

- ► General equilibrium, infinite horizon, 2 country $\{H, F\}$ model
- ► Idiosyncratic uncertainty, no aggregate uncertainty
- ► Heterogeneous plants producing differentiated tradable goods
 - Monopolistic competitors
 - Fixed export costs: startup and continuation
 - Plants are created: endogenous mass of firms
- Exporter life cycle: time to build demand/lower marginal export costs
- ► Final C/I good combines available differentiated tradables

Model

- Mass N_t , N_t^* differentiated H & F intermediates
- ► Each variety produced by 1 domestic-owned establishment
 - ► Idiosyncratic technology shocks: z, $\phi(z'|z)$
 - Fixed export cost: $f = \{f_H, f_L\}$ (paid in labor)
 - ► Iceberg costs: $\xi = \{\xi_L, \xi_H, \infty\}$
 - Establishment's state: $s = (z, \xi, f)$
 - Measure of establishments: $\varphi_{i,t}(z,\xi,f)$

Model

- Mass N_t , N_t^* differentiated H & F intermediates
- Each variety produced by 1 domestic-owned establishment
 - ► Idiosyncratic technology shocks: z, $\phi(z'|z)$
 - Fixed export cost: $f = \{f_H, f_L\}$ (paid in labor)
 - ► Iceberg costs: $\xi = \{\xi_L, \xi_H, \infty\}$
 - Establishment's state: $s = (z, \xi, f)$
 - Measure of establishments: $\varphi_{i,t}(z,\xi,f)$
- Free entry: hire f_E workers, draw $\phi_E(z)$ in t + 1
- Exogenous survival: $n_s(z)$
- ► Timing: fixed costs paid 1 period in advance

Exporting technology

- ► A nonexporter
 - ► In current period: $\xi = \infty$
 - Can pay $f = f_H$ to begin exporting next period
 - ▶ If so, in next period: $\xi' = \xi_L$

Exporting technology

- ► A nonexporter
 - ► In current period: $\xi = \infty$
 - Can pay $f = f_H$ to begin exporting next period
 - ▶ If so, in next period: $\xi' = \xi_L$
- An exporter
 - ▶ In current period: $\xi < \infty$
 - Can pay $f = f_L$ to continue exporting
 - ▶ If so, in next period: draw ξ' w prob. $\rho_{\xi}(\xi'|\xi)$
 - $\blacktriangleright\,$ If not: exit raises cost to $\infty\,$

Exporting technology

- ► A nonexporter
 - ► In current period: $\xi = \infty$
 - Can pay $f = f_H$ to begin exporting next period
 - ▶ If so, in next period: $\xi' = \xi_L$
- ► An exporter
 - ▶ In current period: $\xi < \infty$
 - Can pay $f = f_L$ to continue exporting
 - ▶ If so, in next period: draw ξ' w prob. $\rho_{\xi}(\xi'|\xi)$
 - $\blacktriangleright\,$ If not: exit raises cost to $\infty\,$
- Our model: $\xi_H > \xi_L$, $f_H > f_L$
 - ▶ Das, Roberts, Tybout (2007): $\xi_H = \xi_L$, $f_H > f_L$
 - Ghironi and Melitz (2005): $\xi_H = \xi_L$, $f_H = f_L$
 - ► Krugman (1980) w/heterogeneity: $\xi_H = \xi_L$, $f_H = f_L = 0$

Consumer's problem

$$V_{C,0} = \max_{\{C_t, B_t, \mathcal{K}_{t+1}\}} \sum_{t=0}^{\infty} \beta^t U(C_t)$$

$$C_t + K_{t+1} + Q_t \frac{B_t}{P_t} \leq W_t L_t + R_t K_t + (1-\delta) K_t + \Pi_t + T_t + \frac{B_{t-1}}{P_t},$$

- \blacktriangleright *P*_t, *W*_t denote price level & real wage
- Π_t sum of home country profits, T_t lump sum gov't transfers
- ► Foreign problem is analogous; foreign variables denoted by *

$$Q_{t} = \beta \frac{U_{C,t+1}}{U_{C,t}} = \beta \frac{U_{C,t+1}^{*}}{U_{C,t+1}^{*}},$$

$$1 = \beta \frac{U_{C,t+1}}{U_{C,t}} (R_{t+1} + 1 - \delta) = \beta \frac{U_{C,t+1}^{*}}{U_{C,t}^{*}} (R_{t+1}^{*} + 1 - \delta)$$

Competitive final good producers

- Combine domestic and imported intermediates, produce goods for
 - Consumption, investment, and intermediate use

$$D_{t} = \left[\int_{s} y_{H,t}^{d}(s)^{\frac{\theta-1}{\theta}} \varphi_{H,t}(s) \, ds + \int_{s} y_{F,t}^{d}(s)^{\frac{\theta-1}{\theta}} \varphi_{F,t}(s) \, ds \right]^{\frac{\theta}{\theta-1}}$$
$$D_{t} = C_{t} + I_{t} + \int_{s} x(s) \varphi_{H,t}(s) \, ds$$

► Representative firm maximizes

$$\Pi_{t} = D_{t} - \int_{s} P_{H,t}(s) y_{H,t}^{d}(s) \varphi_{H,t}(s) ds - (1+\tau) \int_{s} P_{F,t}(s) y_{F,t}^{d}(s) \varphi_{F,t}(s) ds$$

- Generates standard input demand functions
- \blacktriangleright τ is a policy

Tradable producers

- ▶ Individual state is $s = (z, \xi, f)$
- ► Production Technology: $y_t(s) = e^z \left[k_t(s)^{\alpha} l_t(s)^{1-\alpha}\right]^{1-\alpha_x} x(s)^{\alpha_x}$

▶ Profit, $\Pi_t(s)$, is

$$\max_{P_{H}, P_{H}^{*}, l, k, x} P_{H,t}(s) y_{H,t}(s) + P_{H,t}^{*}(s) y_{H,t}^{*}(s) - W_{t}l_{t}(s) - R_{t}k_{t}(s) - P_{t}x_{t}(s)$$

s.t. $y_{t}(s) = y_{H,t}^{d}(s) + (1 + \xi) y_{H,t}^{d*}(s)$,

$$V_t(z,\xi,f) = \max\left\{V_t^1(z,\xi,f), V_t^0(z,\xi,f)\right\}$$

$$V_{t}^{1}(z,\xi,f) = \max \Pi_{t}(z,\xi,f) - W_{t}f + n_{s}(z) Q_{t} \sum_{\xi' \in \{\xi_{L},\xi_{H}\}} \int_{z'} V_{t+1}(z',\xi',f_{L}) \phi(z'|z) dz' \rho_{\xi}(\xi'|\xi)$$

$$V_t^0(z,\xi,f) = \max \prod_t (z,\xi,f) + n_s(z) Q_t \int_{z'} V_{t+1}(z',\infty,f_H) \phi(z'|z) dz'$$

▶ With 3 iceberg costs there are three marginal firm types

Free entry

- ▶ Hire f_E workers to enter
- ▶ Draw technology $\phi_E(z)$, produce in t + 1

$$V_{t}^{E} = -W_{t}f_{E} + Q_{t}EV_{t}(z, \infty, f_{H})\phi_{E}(z) \leq 0$$

 $\Rightarrow N_{TE,t}$ new establishments

Trade

- ► No simple relationship between parameters and trade elasticity
- ► Trade depends on tariff and distribution of plant types $\phi_{it}(z, \xi, f)$
- ► Lower tariff: increases export participation
- Lower tariff: increases duration in exporting, lowering ξ

Calibration strategy

- ► Calibrate to the United States in 1990s (matters mostly for tariff level)
- Calibrate the stationary steady state of the model to averages from the data
- ► Some parameters from the literature
- ► Some parameters computed without solving the model eq'm
- Some parameters computed needing to solve the model eq'm

 Part of research is knowing which parameters are in which set. This is somewhat field specific.

Calibration: from the literature or without full solution

• Utility: $U(c) = \frac{c^{1-\sigma}}{1-\sigma}$

$rac{\sigma}{\delta}_{eta}$	IES Capital depreciation Disounting	2 0.10 0.96
heta het	Elasticity of substitution Tariff (Anderson and van Wincoop)	5 0.1
$\begin{array}{c} \alpha_{\mathbf{X}} \\ \alpha \end{array}$	MFR gross output/MFR VA = 2.8 Capital share of income = 34%	0.81 0.13

Calibration: simulated method of moments

Productivity

$$z' = \rho z + \epsilon \qquad \epsilon \sim N(0, \sigma_{\epsilon}^2)$$

Initial productivity

$$z' = -\mu_E + \epsilon_E$$
 $\epsilon_E \sim N\left(0, \frac{\sigma_\epsilon^2}{1 - \rho^2}\right)$

Probability of exit

$$1 - n_s(z) = \max\{0, \min\{e^{-\lambda z} + n_{d0}, 1\}\}$$

- Export costs: two state Markov $\rho_{LL} = \rho_{HH}$
- ► Parameters $(f_L, f_H, \xi_L, \xi_H, \rho_{HH}, \lambda, n_{d0}, \mu_E, \rho, \sigma_{\epsilon}^2)$

Calibration: Establishment data

A. Exporter dynamics and characteristics:

- **0.** Overall export intensity = 13%
- 1. Overall participation rate = 22.3 % (92 Census of Mfrs.)
- **2.** Stopper rate = 17 % (ASM)
- 3. Initial export intensity 1/2 of avg. intensity (Ruhl&Willis 17)
- 4. 5 years to reach avg export intensity (Ruhl&Willis 17)

Calibration: Establishment data

A. Exporter dynamics and characteristics:

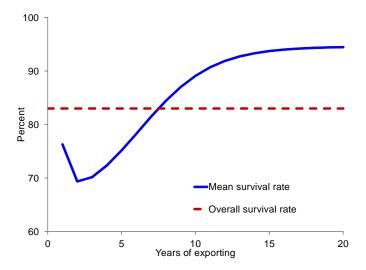
- **0.** Overall export intensity = 13%
- 1. Overall participation rate = 22.3 % (92 Census of Mfrs.)
- 2. Stopper rate = 17 % (ASM)
- 3. Initial export intensity 1/2 of avg. intensity (Ruhl&Willis 17)
- 4. 5 years to reach avg export intensity (Ruhl&Willis 17)

B. Establishment heterogeneity:

- 5. Entrant 5-yr survival 37 % (Dunne et al. 89)
- 6. Birth labor share =1.5 % (Davis, et al. 96)
- 7. Exit labor share = 2.3 % (Davis, et al. 96)
- 8. Establishment and employment distribution (92 Census)
- 9. Establishment exporter distribution (92 Census)

Identification

- ▶ No clean identification: Everything effects everything (GE curse), but...
- $(\xi_L, \xi_H, \rho_{\xi})$ Exporter life cycles
 - mean export intensity
 - ▶ initial export intensity half the mean
 - ► five-year export intensity twice initial intensity
- (f_L, f_H) Export entry and exit
 - export stopper rate
 - export participation rate
- $(\rho, \sigma_{\epsilon}, \lambda, n_{d0}, \mu_E)$ Firm creation and dynamics
 - new-firm share of total labor
 - ► five-year exit rate of new firms
 - ▶ shut-down firm share of total labor

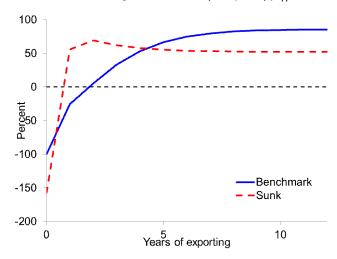

Estimates of export technology

Estimate of benchmark export technology

- Entry cost 40% larger than continuation cost: $f_H/f_L = 1.4$
- ► High iceberg cost 62% larger than low iceberg cost (1.72 vs. 1.07)
- ► Iceberg cost very persistent: $\rho(\xi_H|\xi_H) = 0.92$

	Benchmark	Sunk-cost
f _H /f _E	0.038	
f_L/f_E	0.027	
- <u>ξ</u> Η	1.718	
ξL	1.070	
ρ_{ξ}	0.916	

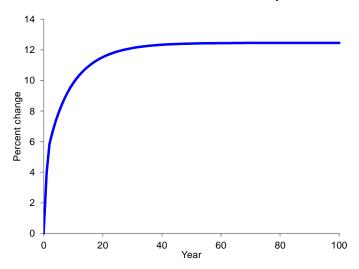
1-year survival rate (not targeted)

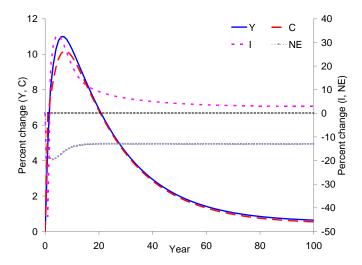

Alternative model: Sunk cost export technology

- Restriction: $\xi_H = \xi_L$
- ► Re-estimate, drop new exporter dynamic moments

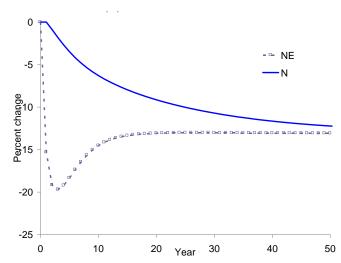
	Benchmark	Sunk-cost
f _H /f _E	0.038	0.058
f _L /f _E	0.027	0.015
ŚΗ	1.718	1.430
ξĹ	1.070	1.430
ρ_{ξ}	0.916	1.000

- $f_H/f_L = 3.9$ vs. $f_H/f_L = 1.4$ in benchmark
- In benchmark model, high survival rate arises because producers don't want to go through growth process again — not sunk costs.


Profits of marginal starters: $(E\pi_{x,t} - f)/f_{H}^{bench}$

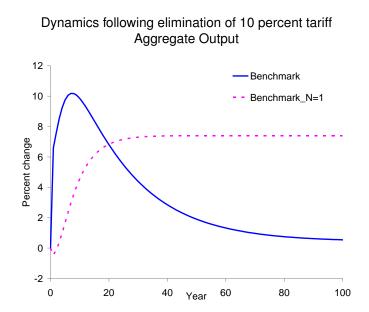

Three experiments

- **1.** Benchmark: $\xi_H > \xi_L$, $f_H > f_L$
- **2.** Sunk cost: $\xi_H = \xi_L$, $f_H > f_L$
- **3.** No cost: $\xi_H = \xi_L$, $f_H = f_L = 0$
- ▶ Consider unanticipated global tariff reduction, $\tau = 0.1 \rightarrow \tau = 0$


Dynamics following elimination of 10 percent tariff Benchmark Model: Trade elasticity

Dynamics following elimination of 10 percent tariff Benchmark Model: Aggregate dynamics

Dynamics following elimination of 10 percent tariff Benchmark Model: Aggregate dynamics

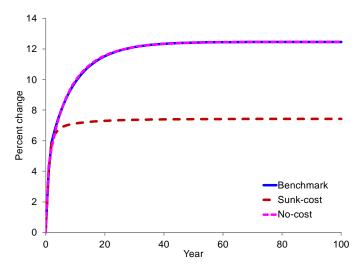

Change	Benchmark	Sunk-cost	No-cost
Welfare gain	6.30		
Avg. trade elasticity ($\bar{\varepsilon}_t$)	10.2		
Δ SS. Consumption	0.42		
SS. Trade elasticity	11.5		

Welfare gain is $x: \sum_{t=0}^{\infty} \beta^t U(C_{-1}e^x) = \sum_{t=0}^{\infty} \beta^t U(C_t)$

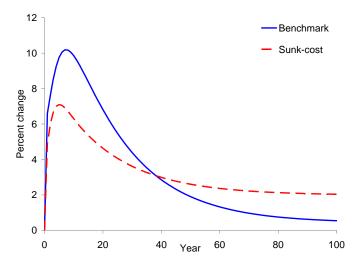
$$\bar{\varepsilon}_t = (1 - \beta) \sum_{t=0}^{\infty} \beta^t \varepsilon_t$$

Source of overshooting

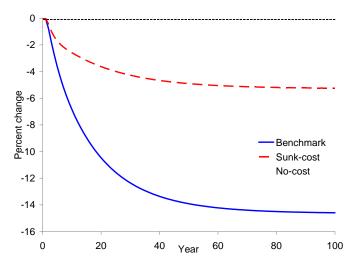
- ► Tariffs lead to an overaccumulation of establishments relative to free trade steady state
- ► These establishments can be converted at a low cost to exporters
- Labor that would have gone to firm creation goes to production
- Experiment: subsidize entry so that $N_t = 1$


The sunk-cost model

- ► Literature has focused on sunk costs as a source of persistent exporting
- ► Sunk cost model misses out on aspects of new exporter dynamics.
- Ask: How well does this simpler dynamic model of exporter approximate trade/welfare predictions of the benchmark model?


The sunk-cost model

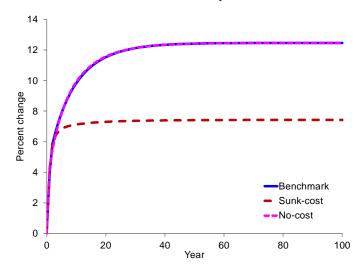
- ► Literature has focused on sunk costs as a source of persistent exporting
- ► Sunk cost model misses out on aspects of new exporter dynamics.
- Ask: How well does this simpler dynamic model of exporter approximate trade/welfare predictions of the benchmark model?
- ► Answer: Not so good on trade, pretty good on consumption/welfare


Trade elasticity

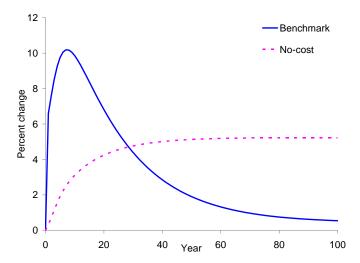
Consumption

Establishments

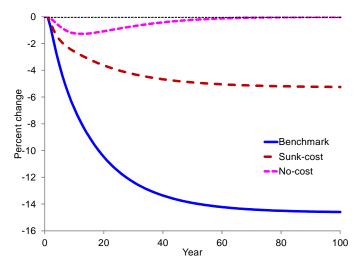
Change	Benchmark	Sunk-cost	No-cost
Welfare gain	6.30	4.75	
Avg. trade elasticity ($\bar{\varepsilon}_t$)	10.2	6.9	
Δ SS. Consumption	0.42	1.98	
SS. Trade elasticity	11.5	7.2	


Welfare gain is $x: \sum_{t=0}^{\infty} \beta^t U(C_{-1}e^x) = \sum_{t=0}^{\infty} \beta^t U(C_t)$

$$\bar{\varepsilon}_t = (1 - \beta) \sum_{t=0}^{\infty} \beta^t \varepsilon_t$$


How important is endogenous exporting?

- ▶ Krugman (1980): all firms export
- Requires two main changes
 - 1. Change θ to get LR trade elasticity
 - 2. Add adjustment friction to get dynamics of trade elasticity


Trade elasticity

Consumption

Establishments

Welfare and trade in the sunk-cost model

Change	Benchmark	Sunk-cost	No-cost
Welfare gain	6.30	4.75	2.34
Avg. trade elasticity ($\bar{\varepsilon}_t$)	10.2	6.9	10.2
Δ SS. Consumption	0.42	1.98	3.93
SS. Trade elasticity	11.5	7.2	11.5

Welfare gain is $x: \sum_{t=0}^{\infty} \beta^t U(C_{-1}e^x) = \sum_{t=0}^{\infty} \beta^t U(C_t)$

$$\bar{\varepsilon}_t = (1 - \beta) \sum_{t=0}^{\infty} \beta^t \varepsilon_t$$

Modeling export intensity dynamics

Export intensity dynamics

- ▶ We took a simple approach. Better micro-founded models...
- Accumulate customers or build habit
- ► Let's sketch out the ideas

Customer-acquisition models of exporter dynamics

▶ Demand for firm's product depends on price (*p*), trade cost (τ), and customer base (*m*):

 $d(p,m;\tau) = (p\tau)^{-\theta} m^{\alpha}$

- $\blacktriangleright \, \alpha$ governs diminishing returns to having more customers
- ► Firms heterogeneous in productivity (*z*)
- Assume constant-markup pricing so that flow profits from exporting given by

$$\pi(z, m; \tau) \propto (z/\tau)^{1-\theta} m^{lpha}$$

- Firm's problem: choose to export/not export to maximize PDV of profits—and possibly, choose how many customers to acquire
- ► Q: How to model customer aquisition?

Customer-acquisition models of exporter dynamics

- ▶ Fitzgerald et al. (2019, 2021): Quadratic adjustment cost
- ▶ Piveteau (2020): Word-of-mouth
- ► Steinberg (2021): Dynamic version of Arkolakis (2010)
- Customer acquisition in other contexts
 - Arkolakis (2010), EKK (2011): static models of how/why exporter distribution varies across bilateral trade relationships
 - Drozd-Nosal (2021): pricing to market, int'l macro puzzles
- Many other papers in which firms initially charge low prices to attract customers; focus on constant-markup models today
 - ► See Fitzgerald et al. (2019, 2021) for good review of both approaches

Fitzgerald et al. (2019, 2021)

- ▶ Pay sunk cost *s* to start exporting with <u>m</u> initial customers (exogenous)
- ▶ Pay fixed cost *f* to continue exporting; if not, lose all customers
- Customer base depreciates at rate δ , grows by investment *a*

$$m' = (1 - \delta)m + a$$

Cost of investment:

$$c(m,a) = a + \phi a^2/m$$

► Dynamic program (V^0 : potential exporter, V^1 : incumbent):

$$V^{0}(z) = \max \left\{ \mathbb{E} V^{0}(z'), \pi(z,\underline{m};\tau) - f + \mathbb{E} V^{1}(z',\underline{m}) \right\}$$

$$V^{1}(z) = \max \left\{ \mathbb{E} V^{0}(z'), \max_{m} \left[\pi(z,(1-\delta)m + a;\tau) - s - c(m,a) + \mathbb{E} V^{1}(z',(1-\delta)m + a) \right] \right\}$$

Piveteau (2020)

- ▶ Pay sunk cost *s* to start exporting with <u>m</u> initial customers (exogenous)
- ▶ Pay fixed cost *f* to continue exporting; if not, lose all customers
- Customer base growth depends on sales and size of current customer base ("word of mouth")

$$m' = 1 - \{1 - \eta_1(1 - \psi)pd(p, m; \tau) - \eta_2(1 - \psi)m\}^{\frac{1}{1 - \psi}} \in (0, 1)$$

No cost of investment (in paper firm can also grow customer base by charging lower prices, and therefore selling more than under constant-markup pricing)

$$V^{0}(z) = \max \left\{ \mathbb{E}V^{0}(z'), \pi(z,\underline{m};\tau) - f + \mathbb{E}V^{1}(z',\underline{m}) \right\}$$
$$V^{1}(z) = \max \left\{ \mathbb{E}V^{0}(z'), \pi(z,m';\tau) - s + \mathbb{E}V^{1}(z',m') \right\}$$

Steinberg (2021): market penetration dynamics

- No sunk or fixed costs, initial customer base endogenous
- Customer base evolves according to m' = n + o, where
 - ▶ $n \in [0, 1 m]$: new customers attracted
 - ▶ $o \in [0, m]$ old customers retained
- ► Attraction/retention costs depend on current customer base:

$$a_n(m,n) = \frac{L^{\alpha_n}(1-m)^{\beta_n}}{\psi_n(1-\gamma_n)} \left[1 - \left(\frac{1-m-n}{1-m}\right)^{1-\gamma_n} \right]$$
$$a_o(m,o) = \frac{L^{\alpha_o}m^{\beta_o}}{\psi_o(1-\gamma_o)} \left[1 - \left(\frac{m-o}{m}\right)^{1-\gamma_o} \right]$$

▶ Given current customer base *m*, cost of getting to *m*' given by

$$f(m,m') = \min_{n,o} \{a_n(m,n) + a_o(m,o)\}$$
 s.t. $0 \le n \le 1 - m$, $0 \le o \le m$, $m' = n + o$

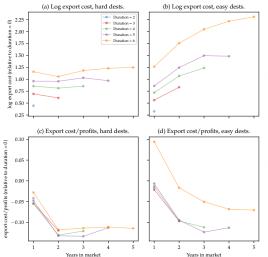
Steinberg (2021): dynamic program

Value function:

$$V(z,m) = \max_{m'} \left\{ \pi(z,m') - f(m,m') + \frac{\delta(z)}{1+R} \mathbb{E}\left[V(z',m')|x,z\right] \right\}$$

Solution: $\underbrace{f_2(m,m')}_{\text{marginal cost}} \ge \underbrace{\tilde{\pi}z^{\theta-1}}_{\text{marginal profit}} - \underbrace{\frac{\delta(z)}{1+R} \mathbb{E}\left[f_1(m',m'')|z\right]}_{\mathbb{E}[\downarrow] \text{ in future exporting cost}}$
 \blacktriangleright If $m = 0$, enter if $z \ge \underline{z}$:

$$f_2(0,0) = \tilde{\pi}\underline{z}^{\theta-1} - \frac{\delta(z)}{1+R}\mathbb{E}\left[f_1(0,m'')|z\right]$$


▶ If m > 0, exit if $m \le \underline{m}(z)$:

$$f_2(\underline{\mathbf{m}}(z),\mathbf{0}) = \tilde{\pi} z^{\theta-1} - \frac{\delta(z)}{1+R} \mathbb{E}\left[f_1(\mathbf{0},m'')|z\right]$$

Steinberg (2021): key properties

- ► $f_2(m, 0) > 0$: marginal cost of serving a single customer strictly positive \Rightarrow entry + exit
- ▶ $f_{22}(m, m') > 0$: MC increasing in size of new customer base \Rightarrow concentration
- ▶ $f_{21}(m, m') < 0$: MC decreasing in size of initial customer base \Rightarrow new exporter dynamics
 - F₂(0, m') > f₂(m, m'): Entrant's MC curve entrants higher than incumbent's ⇒ entrants start small then grow
 - *f*₂(0,0) > *f*₂(*m*,0): Entrant's MC of acquiring single new customer higher than incumbent's MC of keeping single old customer ⇒ exit rate ↓ in *m*

Steinberg (2021): Calibrated exporting costs

Levels:

- ► Hard dests: flat w/ time in a market
- ► Easy dests: ↑ w/ time in a market
- ► Higher for more successful exporters

Relative to profits:

- $\blacktriangleright \downarrow$ w/ time in a market
- More pronounced \downarrow in easy dests.
- ► $f_2(m, m')/(LY) \downarrow$ in $L, Y \Rightarrow$ variation in exporter dynamics across markets

Complementary investments

- Trade costs depend on what else the firm is doing
- Example: If I import from a country, it is easier for me to export to it
- 1. Destinations (Albornoz et al., 2012; Albornoz et al., 2016; Morales et al., 2019)
- 2. Importing and exporting (Kasahara and Lapham, 2013)
- 3. Importing, exporting and destinations (Li et al., 2023)

References

Albornoz, Facundo, Sebastián Fanelli, and Juan Carlos Hallak (2016). "Survival in export markets." *Journal of International Economics* 102, pp. 262 –281.

Albornoz, Facundo et al. (2012). "Sequential exporting." Journal of International Economics 88 (1), pp. 17-31.

- Alessandria, George, Horag Choi, and Kim J. Ruhl (2021). "Trade adjustment dynamics and the welfare gains from trade." Journal of International Economics 131, pp. 1034–58.
- Kasahara, Hiroyuki and Beverly Lapham (2013). "Productivity and the decision to import and export: Theory and evidence." *Journal of international Economics* 89 (2), pp. 297–316.
- Li, Yao Amber et al. (2023). "Bilateral economies of scope." Unpublished manuscript.

Morales, Eduardo, Gloria Sheu, and Andrés Zahler (2019). "Extended gravity." The Review of Economic Studies.