International Trade and Macro: Solving PE sunk-cost models

Solving discrete models

- Goal: Solve and estimate a sunk-cost model

1. Solve model
2. Estimate model

- Focus on solution for now

Algorithm

1. Initial set up

- Set parameter values
- Construct grids; Discretize continuous stochastic processes
- Initialize policy and value functions

2. Solve decision problem

- Value/policy function iteration to convergence
- Key output: Policy functions

3. Create simulated panel of data

- Set initial firm states; Draw sequences of shocks
- Use policy functions to model firm behavior, record panel
- Use panel to compute moments in simulated data

4. Compare model-moments to data-moments

- If moments match, finished
- If moments do not match, update parameters, return to step 2.

1. Initial setup

- Parameters
- $\theta=$ elasticity of substitution in demand
- $\tau=$ tariff (constant for now, could be stochastic)
- $\beta=$ discount factor
- $\delta=$ survival probability
- $t_{0}, f_{1}=$ export entry, continuation costs
- A process for $\mathrm{z}\left(\bar{z}, \rho, \sigma_{\epsilon}\right)$

$$
\begin{aligned}
\log \left(z^{\prime}\right)= & (1-\rho) \log (\bar{z})+\rho \log (z)+\epsilon \\
\epsilon & \sim \text { iid } \mathrm{N}\left(0, \sigma_{\epsilon}\right)
\end{aligned}
$$

- $\xi_{H}>\xi_{L}$ export variable costs (constant for now, could be stochastic)
- $g=g(z)$ is the probability mass function of new producers

1. Initial setup

- Construct a grid for z
- Equally spaced points
- Importance-weighted: Use CDF of ergodic distribution
- Use Tauchen-like method to convert AR(1) to discrete Markov chain
- Precompute and store $\pi(x, z, \xi)$
- Initialize value and policy functions
- $V^{1}(x, z, \xi)$ value function for exporter $\left(N_{z} \times N_{\xi} \times 2\right)$
- $V^{0}(x, z, \xi)$ value function for non-exporter
- $V(x, z, \xi)$ value of the firm (need two of these, old and new)
- $X(x, z, \xi)$ export decision
- Initialize V to something like $\pi(z, \xi) /(1-\beta \delta \rho)$
- Ancillary functions: $I(x, z, \xi), \operatorname{ex}(z, \xi)$. Compute after convergence.

2. Solve decision problem

- Value function iteration. Loop over z_{i}

$$
\begin{aligned}
& V^{1}\left(x, z_{i}, \xi\right)=\pi(x, z, \xi)-x f_{1}-(1-x) f_{0}+\beta \sum_{z_{j}} V_{\text {old }}\left(1, z_{j}, \xi\right) \operatorname{prob}\left(z_{j} \mid z_{i}\right) \\
& V^{0}\left(x, z_{i}, \xi\right)=\pi(x, z, \xi)+\beta \sum_{z_{j}} V_{\text {old }}\left(0, z_{j}, \xi\right) \operatorname{prob}\left(z_{j} \mid z_{i}\right) \\
& V_{\text {new }}\left(x, z_{i}, \xi\right)=\max \left\{V^{1}\left(x, z_{i}, \xi\right), V^{0}\left(x, z_{i}, \xi\right)\right\}
\end{aligned}
$$

- Check: $\left\|V_{\text {new }}\left(x, z_{i}, \xi\right)-V_{\text {old }}\left(x, z_{i}, \xi\right)\right\|$
- If not converged, set $V_{\text {old }}\left(x, z_{i}, \xi\right)=V_{\text {new }}\left(x, z_{i}, \xi\right)$, repeat
- Once converged, compute $X\left(x, z_{i}, \xi\right), I\left(x, z_{i}, \xi\right)$, ex $\left(z_{i}, \xi\right)$

2. Decision rules: interpolation

- With a discrete choice, there is a cutoff for entry z_{0}, z_{1} but this cutoff is generally between nodes.
- Thus small changes in parameters can lead to discrete changes in the mass of firms making the choice.
- This can lead to some instability in convergence or parameter estimation, especially with sparse grid.
- Solution: interpolate and randomize.
- Find the cutoffs using the value functions.
- Assume firms are distributed uniformly between the nodes and then let the decision rule be based on the share of firms that meet the threshold.

3. Simulate a panel

- We have the decision rules...
- Want to create a panel data set of firms in the stationary distribution

1. $t=0$: Create N_{f} firms, assign each a ξ and a z_{0}; all nonexporters
2. $t=1, \ldots, t=T ; f=0, \ldots, N_{f}$

- Draw a z_{t} for firm f (use ergodic dist and uniform random)
- Compute export decision, production, exports, etc.

3. To avoid initial conditions problem, throw out first several hundred observations. Check that moments do not change (much) over the panel.

- Now we have a panel of data...
- If we structured our panel correctly we can literally use the same code we used on the data on the model panel.

3. Distribution dynamics

- Let $\mu_{t}\left(x, z_{i}, \xi\right)$ denote the mass of each type of firms.
- Vector μ_{t} evolves according to difference equation

$$
\mu_{t+1}=\Psi_{t} \mu_{t}+m_{t} g_{t}, \quad t=0,1, \ldots
$$

where $n \times n$ coefficient matrix Ψ_{t} has elements governing the exogenous and endogenous transitions

- Mass of firms at node $\left(x, z_{i}, \xi\right)$ at $t+1$ depends on transition probabilities and export entry and exit decisions of incumbents at t plus flow of new entrants

Speeding up the last step

- With linear law of motion for μ, the stationary distribution is linearly homogeneous in m
- In terms of the discretized system above

$$
\boldsymbol{\mu}=\boldsymbol{\Psi} \boldsymbol{\mu}+m \mathbf{g} \quad \Rightarrow \quad \boldsymbol{\mu}=m(\mathbf{I}-\boldsymbol{\Psi})^{-1} \mathbf{g}
$$

where I is an identity matrix

- Two implications
- no need to use simulations to find stationary distribution μ, just set up coefficient matrix $\boldsymbol{\Psi}$ (implied by $x^{*}\left(x, z_{i}, \xi\right)$) and calculate directly
- only invert (I-世) once, then just rescale by m
- We wrote this down as one $\mu_{t}\left(x, z_{i}, \xi\right)$ but obviously could write this down as several distributions $\mu_{t}^{j}\left(z_{i}, \xi\right)$ which allows for easier inversion.

Computing moments: two approaches

1. Simulate panel.

- Sampling errors can be large, may require long burn ins.
- Can be very slow.
- But data is from finite samples.

2. Using decisions rules and ergodic distributions

- Yields exact moments using integration and and some iterations of transition matrices.
- Can be very fast.
- No errors

Aggregate shocks

- No aggregate uncertainty here
- Make E_{t} an $\mathrm{AR}(1)$ process that affects all firms identically
- Need to discretize and add to the firm's state variables

$$
V(x, z, \xi, E)=\pi(z, \xi, E)+\cdots+\sum_{z^{\prime}, E^{\prime}}
$$

- Easy to do in partial equilibrium; will typically overstate the effect of a foreign demand shock - price dynamics will attenuate also misses out on rich interactions between other macro variables (income, wages, interest rates,)

Endogenous innovation models

- Firm efficiency is exogenous
- Recent work emphasizes endogenous efficiency. Introduce investment, ι_{i}, that affects distribution of idiosyncratic productivity

$$
F\left(a_{j} \mid a_{i}, l_{i}\right)
$$

- Model the cost as increasing in current productivity, $\chi a_{i}^{\theta} l_{i}$ with $\theta>1$
- Luttmer (07), Klette \& Kortum (04), Atkeson \& Burstein (09), Lenz \& Mortenson (07)

Solution methods

- Moll: https://benjaminmoll.com/codes/
- Winberry: https://www.thomaswinberry.com/research/ winberryAlgorithm.pdf
- Terry: https://onlinelibrary.wiley.com/doi/abs/10. 1111/jmcb. 12414
- Mongey:
http://www.simonmongey.com/teaching--notes.html
- Kirkby: https://www.vfitoolkit.com/

