International Trade and Macro: Time to ship, lumpy trade, and inventories

Trade costs are more than tariffs

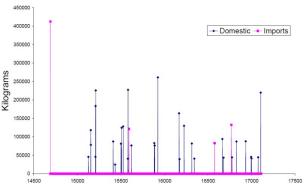
- 1. Easy (and useful) to model tariffs and ad valorem trade costs
- 2. There are other important frictions out there

Friction: Delivery lags

- ► Lag between order and delivery is 6–8 weeks
- ► Shipping lags (Hummels, 1999)
 - ► 2–6 weeks by vessel, 1 day by air
 - ▶ Vessel accounts for most developing country trade (70%)
- ► Customs/paperwork (from WB *Doing business*
 - ► Adds 2–5 weeks
 - ► Some data at https://lpi.worldbank.org/international/global

► A related issue: Production lags, back orders,...

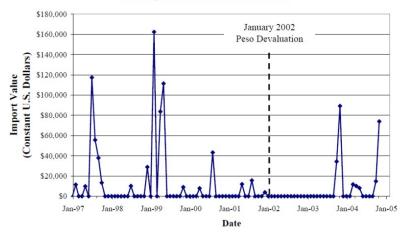
Friction: Fixed transactions costs


	Argentina	Russia	Mexico
Documents preparation	\$750	\$437	\$206
Customs clearance & tech. control	\$150	\$500	\$224
Port & terminal handling	\$600		\$165
U.S. export costs	\$625	\$625	\$625
Fraction of mean shipment	0.04	0.02	0.01
Fraction of median shipment	0.17	0.07	0.11

► Freight has a fixed component, too

- ► Fixed transactions costs (in a model) imply infrequent shipments
- ▶ Larger fixed costs create lumpier trade flows
- ► Evidence:
 - 1. US steel wholesaler (George Hall and John Rust)
 - 2. US product-level exports

- ▶ Transaction-level data, identical goods from domestic and foreign suppliers
- ▶ 3,573 goods, 18,104 transactions, 9 years of daily data
- ▶ Import premia: Purchases 50 percent larger
- ▶ Import lumpiness: mean 205 vs 100 days (median: 140 vs 56 days)


Purchases of hot-rolled steel coils (1/4" x 48")

- ▶ All US export goods, monthly, 1990–2005
- ► Values, quantities, number of transactions
- ► A good is: HS-10 x port of exit

Sample of Import Lumpiness:

TABLEWARE AND KITCHENWARE, OF PORCELAIN OR CHINA, NOT FOR HOTELS OR RESTAURANTS

Argentina	Russia	Mexico
0.47	0.43	0.90
0.40	0.45	0.21
0.50	0.53	0.27
0.83	0.85	0.53
2.2	2.7	32.3
	0.47 0.40 0.50 0.83	0.47 0.43 0.40 0.45 0.50 0.53 0.83 0.85

 $ightharpoonup s_i = \text{share of annual trade in month } i$

$$HH = \sum_{i=1}^{12} s_i^2$$

- ▶ Equal value in all months: HH = 1/12 = 0.83
- ▶ All value in one month: HH = 1
- ▶ $HH = 0.45 \rightarrow 2.2$ months with trade in a year

▶ Is it seasonality? No.

	Argentina	Russia	Mexico
Within year, across months			
HH index	0.40	0.45	0.21
Fraction of annual trade in top mo.	0.50	0.53	0.27
Fraction of annual trade in 3 top mos.	0.83	0.85	0.53
Across years, within month			
HH index	0.50	0.75	0.15
Fraction of annual trade in top mo.	0.60	0.80	0.25
Fraction of annual trade in top 3 mos.	0.96	1.00	0.54

► Lumpy in all types of goods

	Food	Int	Cap	Autos/parts	Cons
Months with exports (%)	0.33	0.45	0.36	0.68	0.45
HH index	0.53	0.40	0.52	0.35	0.41
Fraction annual trade in top mo.	0.59	0.49	0.61	0.42	0.51
Fraction annual trade in top 3 mos.	0.89	0.83	0.90	0.74	0.84
Share US exports	0.02	0.42	0.13	0.06	0.07

International traders need inventories

- ► Time to ship + fixed shipment costs → lumpy shipments
- ▶ How do firms have inputs to produce/sell?
- Firms hold inventories
- \blacktriangleright Larger costs, longer lags \rightarrow inventory is more important

► Chilean plant-level data, unbalanced panel from 1990–2001

$$i_{jt} = c + \alpha_m s_{jt}^m + \alpha_x s_{jt}^x + \epsilon_{jt}$$

- $ightharpoonup i_{it}$: inventory-materials ratio
- \triangleright s_{it}^M : imports as share of material purchases
- \triangleright s_{it}^x : exports as share total sales

Inventory problems are bigger for exporters/importers

	С	$\alpha_{\it m}$	α_{X}
Inventory	0.18	0.187	
(t-stat)	(18.4)	(15.6)	
Inventory	0.22	0.15	0.25
(t-stat)	(18.4)	(15.6)	(2.7)

- ► Includes controls for size (also works with industry FE)
- ▶ Non-importer $0.18 \times 12 = 2.16$ months
- ▶ 100% importer/exporter (0.22 + 0.15 + 0.25 = 0.62) $0.62 \times 12 = 7.4$ months
- ▶ Holds if control for materials vs. finished goods
- ► Holds in US, India, Peru, Colombia data...

Richer trade costs, richer models

- ▶ Firms use inventories to
 - ▶ Save on fixed shipment costs
 - ▶ Deal with shipping times
 - ► Keep from stocking out
- ▶ Importer/exporters use inventories more intensively

▶ Let's put inventory-choice models into trade...

References I

Hummels, David (1999). "Towards a geography of trade costs." Unpublished manuscript.