Trade Adjustment Dynamics and the Welfare Gains from Trade

George Alessandria Horag Choi Kim J. Ruhl U. Rochester Monash University UW–Madison

December 2021 | BiKiParis Reading Group

Fundamental questions

- 1. How big are the welfare gains from trade?
- 2. How big are trade barriers?

Advances in trade theory

- ► Producer-level heterogeneity
 - ► Eaton and Kortum (2002), Melitz(2003)
- ► Discrete-choice export decisions
 - ▶ Baldwin and Krugman (1989), Roberts and Tybout (1997)
 - ▶ Entry cost and continuation cost formulation
 - ► Exporting is a dynamic choice
- ▶ What have we learned?

Fundamental questions: The literature

- 1. How big are the welfare gains from trade?
 - ► Not very big
 - ► In "static" models: Firm heterogeneity not important (Arkolakis, Costinot, Rodriguez-Clare, 2012)
- 2. How big are trade barriers?
 - ► Producer export entry costs are very large
 - ► Significant fraction of entry cost is sunk

Fundamental questions: The literature

- 1. How big are the welfare gains from trade?
 - ► Not very big
 - ► In "static" models: Firm heterogeneity not important (Arkolakis, Costinot, Rodriguez-Clare, 2012)
- 2. How big are trade barriers?
 - Producer export entry costs are very large
 - ► Significant fraction of entry cost is sunk
- ▶ Missing: Connection between firm dynamics and the aggregate
 - ▶ Most GE models lack micro-founded aggregate dynamics
 - ► Most exporter dynamic models are PE

Our model

- ▶ GE model with producer-level export dynamics
- ► Keep standard sunk/fixed cost setup
- Introduce stochastic variable trade costs
 - ▶ Need time, resources, and luck to become an efficient exporter
 - ▶ Model: 3 years to turn profit, 5 years to break even
- ► Key tradeoff: accumulating varieties vs. exporters
- ▶ Plant-level data discipline aggregate dynamics

Fundamental questions: Our answers

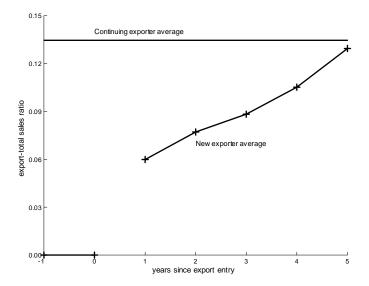
- 1. How big are the welfare gains from trade?
 - ► Larger than steady-state changes
 - ► Gain 2.8X larger than no-micro-dynamics model
 - ► Gain 1.5X larger than sunk-cost model
 - ▶ Unilateral liberalization: Welfare gain, but s-s consumption falls
- 2. How big are trade barriers?
 - ► Entry costs are smaller than previous estimates
 - ► Sunk component substantially smaller
 - ► Total resources devoted to exporting are large

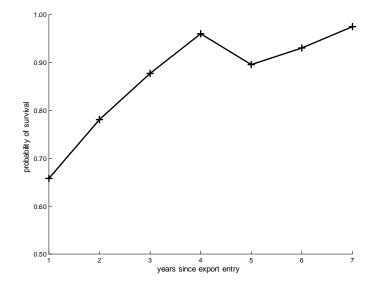
Overview

- ► Exporter dynamics facts
- ► Model
- Results
 - Estimates of export technology
 - ► Welfare in bilateral trade reform
 - ► Welfare in unilateral trade reform

Micro exporter facts

- 1. Not all plants export (22% in US)
- 2. Exporters are relatively large (5x larger)
- 3. Exporting is persistent (83% survival)


Micro exporter facts


- 1. Not all plants export (22% in US)
- 2. Exporters are relatively large (5x larger)
- 3. Exporting is persistent (83% survival)
- 4. New exporters start with low export intensity

 $exs_{it} = exports_{it}/total \ sales_{it}$

- 5. New exporters take time (5yrs) to get to average exporter levels
- 6. New exporters have high exit rates

Export intensity of Colombian exporters (Ruhl & Willis, 17)

Survival probability of Colombian new exporters (Ruhl & Willis, 17)

	End of sample		Starter size discount		Export survival	
	Part.	Exports	Sales	Intensity	All exporters	Starters
Chile (98–06)	56.7	39.2	0.53	0.45	0.81	0.65
Colombia (81–89)	57.2	38.4	0.41	0.46	0.90	0.66
Balanced panels						
Chile (98–06)	27.4	9.2	0.49	0.59	0.83	0.66
Colombia (81–89)	24.7	14.5	0.43	0.48	0.90	0.68
Compustat (84–92)	28.2	11.0	0.54	0.51	0.93	0.83
U.S.* (84–92)	42.0		0.4-0.6	0.55	0.66	

New exporter importance, growth, and survival

*Bernard and Jensen (1995, 1999, 2004)

- General equilibrium, infinite horizon, 2 country $\{H, F\}$ model
- ▶ Idiosyncratic uncertainty, no aggregate uncertainty
- ► Heterogeneous plants producing differentiated tradable goods
 - Monopolistic competitors
 - ► Fixed export costs: startup and continuation
 - ▶ Plants are created: endogenous mass of firms
- ► Exporter life cycle: time to build demand/lower marginal export costs
- ► Final C/I good combines available differentiated tradables

Model

- ▶ Mass N_t, N_t^* differentiated H & F intermediates
- ► Each variety produced by 1 domestic-owned establishment
 - ▶ Idiosyncratic technology shocks: z, $\phi(z'|z)$
 - ▶ Fixed export cost: $f = \{f_H, f_L\}$ (paid in labor)

• Iceberg costs:
$$\xi = \{\xi_L, \xi_H, \infty\}$$

- Establishment's state: $s = (z, \xi, f)$
- Measure of establishments: $\varphi_{i,t}(z,\xi,f)$

Model

- ▶ Mass N_t, N_t^* differentiated H & F intermediates
- ► Each variety produced by 1 domestic-owned establishment
 - ▶ Idiosyncratic technology shocks: z, $\phi(z'|z)$
 - ▶ Fixed export cost: $f = \{f_H, f_L\}$ (paid in labor)

• Iceberg costs:
$$\xi = \{\xi_L, \xi_H, \infty\}$$

- Establishment's state: $s = (z, \xi, f)$
- Measure of establishments: $\varphi_{i,t}(z,\xi,f)$
- Free entry: hire f_E workers, draw $\phi_E(z)$ in t+1
- Exogenous survival: $n_s(z)$
- ▶ Timing: fixed costs paid 1 period in advance

Exporting technology

- ► A nonexporter
 - ▶ In current period: $\xi = \infty$
 - Can pay $f = f_H$ to begin exporting next period
 - ▶ If so, in next period: $\xi' = \xi_L$

Exporting technology

- ► A nonexporter
 - ▶ In current period: $\xi = \infty$
 - Can pay $f = f_H$ to begin exporting next period
 - ▶ If so, in next period: $\xi' = \xi_L$
- ► An exporter
 - ▶ In current period: $\xi < \infty$
 - Can pay $f = f_L$ to continue exporting
 - ▶ If so, in next period: draw ξ' w prob. $\rho_{\xi}(\xi'|\xi)$
 - \blacktriangleright If not: exit raises cost to ∞

Exporting technology

- ► A nonexporter
 - ▶ In current period: $\xi = \infty$
 - Can pay $f = f_H$ to begin exporting next period
 - ▶ If so, in next period: $\xi' = \xi_L$
- ► An exporter
 - ▶ In current period: $\xi < \infty$
 - Can pay $f = f_L$ to continue exporting
 - ▶ If so, in next period: draw ξ' w prob. $\rho_{\xi}(\xi'|\xi)$
 - \blacktriangleright If not: exit raises cost to ∞
- ▶ Our model: $\xi_H > \xi_L$, $f_H > f_L$
 - ▶ Das, Roberts, Tybout (2007): $\xi_H = \xi_L$, $f_H > f_L$
 - Ghironi and Melitz (2005): $\xi_H = \xi_L$, $f_H = f_L$
 - ▶ Krugman (1980) w/heterogeneity: $\xi_H = \xi_L$, $f_H = f_L = 0$

$$V_{C,0} = \max_{\{C_{t},B_{t},K_{t+1}\}} \sum_{t=0}^{\infty} \beta^{t} U(C_{t})$$

$$C_t + K_{t+1} + Q_t \frac{B_t}{P_t} \leq W_t L_t + R_t K_t + (1-\delta) K_t + \Pi_t + T_t + \frac{B_{t-1}}{P_t},$$

- ▶ P_t , W_t denote price level & real wage
- Π_t sum of home country profits, T_t lump sum gov't transfers
- ▶ Foreign problem is analogous; foreign variables denoted by *

$$Q_{t} = \beta \frac{U_{C,t+1}}{U_{C,t}} = \beta \frac{U_{C,t+1}^{*}}{U_{C,t+1}^{*}},$$

$$1 = \beta \frac{U_{C,t+1}}{U_{C,t}} \left(R_{t+1} + 1 - \delta \right) = \beta \frac{U_{C,t+1}^{*}}{U_{C,t}^{*}} \left(R_{t+1}^{*} + 1 - \delta \right)$$

Competitive final good producers

- \blacktriangleright Combine domestic and imported intermediates, produce goods for
 - ► Consumption, investment, and intermediate use

$$D_{t} = \left[\int_{s} y_{H,t}^{d}\left(s\right)^{\frac{\theta-1}{\theta}} \varphi_{H,t}\left(s\right) ds + \int_{s} y_{F,t}^{d}\left(s\right)^{\frac{\theta-1}{\theta}} \varphi_{F,t}\left(s\right) ds\right]^{\frac{\theta}{\theta-1}}$$
$$D_{t} = C_{t} + I_{t} + \int_{s} x(s) \varphi_{H,t}\left(s\right) ds$$

n

► Representative firm maximizes

$$\Pi_{t} = D_{t} - \int_{s} P_{H,t}(s) y_{H,t}^{d}(s) \varphi_{H,t}(s) ds - (1+\tau) \int_{s} P_{F,t}(s) y_{F,t}^{d}(s) \varphi_{F,t}(s) ds$$

- ▶ Generates standard input demand functions
- $\blacktriangleright \ \tau$ is a policy

Tradable producers

- Individual state is $s = (z, \xi, f)$
- ► Production Technology: $y_t(s) = e^z \left[k_t(s)^{\alpha} l_t(s)^{1-\alpha}\right]^{1-\alpha_x} x(s)^{\alpha_x}$

▶ Profit, $\Pi_t(s)$, is

 $\max_{P_{H}, P_{H}^{*}, l, k, \times} P_{H,t}(s) y_{H,t}(s) + P_{H,t}^{*}(s) y_{H,t}^{*}(s) - W_{t}l_{t}(s) - R_{t}k_{t}(s) - P_{t}x_{t}(s)$ s.t. $y_{t}(s) = y_{H,t}^{d}(s) + (1 + \xi) y_{H,t}^{d*}(s)$,

$$V_{t}\left(z,\xi,f\right) = \max\left\{V_{t}^{1}\left(z,\xi,f\right),V_{t}^{0}\left(z,\xi,f\right)\right\}$$

$$V_{t}^{1}(z,\xi,f) = \max \prod_{t} (z,\xi,f) - W_{t}f$$

+ $n_{s}(z) Q_{t} \sum_{\xi' \in \{\xi_{L},\xi_{H}\}} \int_{z'} V_{t+1}(z',\xi',f_{L}) \phi(z'|z) dz' \rho_{\xi}(\xi'|\xi)$

$$\begin{aligned} V_t^0\left(z,\xi,f\right) &= \max \Pi_t\left(z,\xi,f\right) \\ &+ n_s\left(z\right) Q_t \int_{z'} V_{t+1}\left(z',\infty,f_H\right) \phi\left(z'|z\right) dz' \end{aligned}$$

▶ With 3 iceberg costs there are three marginal firm types

- ▶ Hire f_E workers to enter
- ▶ Draw technology $\phi_E(z)$, produce in t+1

$$V_{t}^{E} = -W_{t}f_{E} + Q_{t}EV_{t}(z, \infty, f_{H})\phi_{E}(z) \leq 0$$

 $\Rightarrow N_{TE,t}$ new establishments

Trade

- ▶ No simple relationship between parameters and trade elasticity
- ► Trade depends on tariff and distribution of plant types $\phi_{it}(z,\xi,f)$
- ► Lower tariff: increases export participation
- \blacktriangleright Lower tariff: increases duration in exporting, lowering ξ

Calibration: Aggregates

• Utility:
$$U(c) = \frac{c^{1-\sigma}}{1-\sigma}$$

σ	IES	2
δ	Capital depreciation	0.10
β	Disounting	0.96
θ	Elasticity of substitution	5
au	Tariff (Anderson and van Wincoop)	0.1
α_{x}	MFR gross output/MFR VA $= 2.8$	0.81
α	Capital share of income $= 34\%$	0.13

Calibration: Establishment heterogeneity

Productivity

$$z' = \rho z + \epsilon$$
 $\epsilon \sim N(0, \sigma_{\epsilon}^2)$

Initial productivity

$$z' = -\mu_E + \epsilon_E \qquad \epsilon_E \sim N\left(0, \frac{\sigma_\epsilon^2}{1 - \rho^2}\right)$$

Probability of exit

$$1 - n_s(z) = \max\{0, \min\{e^{-\lambda z} + n_{d0}, 1\}\}$$

- ► Export costs: two state Markov $\rho_{LL} = \rho_{HH}$
- ▶ Parameters $(f_L, f_H, \xi_L, \xi_H, \rho_{HH}, \lambda, n_{d0}, \mu_E, \rho, \sigma_{\epsilon}^2)$

A. Exporter dynamics and characteristics:

- 1. Overall participation rate = 22.3 % (92 Census of Mfrs.)
- **2.** Stopper rate = 17 % (ASM)
- 3. Initial export intensity 1/2 of avg. intensity (Ruhl&Willis 17)
- 4. 5 years to reach avg export intensity (Ruhl&Willis 17)

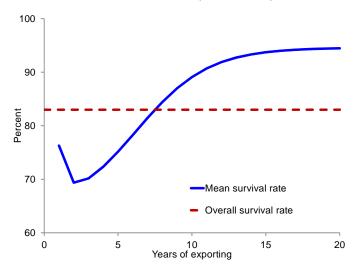
A. Exporter dynamics and characteristics:

- 1. Overall participation rate = 22.3 % (92 Census of Mfrs.)
- **2.** Stopper rate = 17 % (ASM)
- 3. Initial export intensity 1/2 of avg. intensity (Ruhl&Willis 17)
- 4. 5 years to reach avg export intensity (Ruhl&Willis 17)

B. Establishment heterogeneity:

- 5. Entrant 5-yr survival 37 % (Dunne et al. 89)
- 6. Birth labor share =1.5 % (Davis, et al. 96)
- 7. Exit labor share = 2.3 % (Davis, et al. 96)
- 8. Establishment and employment distribution (92 Census)
- 9. Establishment exporter distribution (92 Census)

Overview

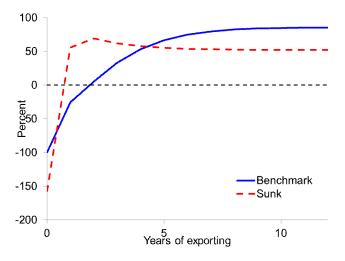

- ► Exporter dynamics facts
- ► Model
- Results
 - ► Estimates of export technology
 - ► Welfare in bilateral trade reform
 - ► Welfare in unilateral trade reform

Estimate of benchmark export technology

- Entry cost 40% larger than continuation cost: $f_H/f_L = 1.4$
- ▶ High iceberg cost 62% larger than low iceberg cost (1.72 vs. 1.07)
- Iceberg cost very persistent: $\rho(\xi_H|\xi_H) = 0.92$

Common parameters				
	Benchmark	Sunk-cost		
f _H /f _E	0.038			
f_L/f_E	0.027			
ξн	1.718			
ξL	1.070			
$ ho_{\xi}$	0.916			

1-year survival rate (not targeted)

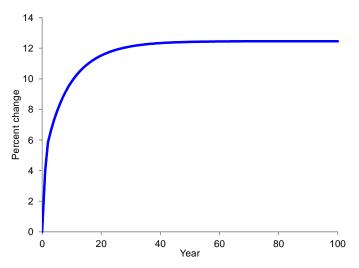


• Restriction: $\xi_H = \xi_L$

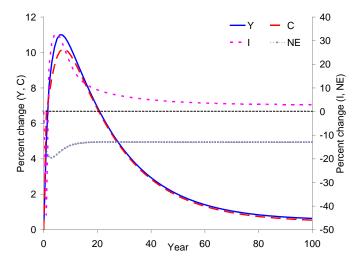
	Benchmark	Sunk-cost
f_H/f_E	0.038	0.058
f_L/f_E	0.027	0.015
ξн	1.718	1.430
ξL	1.070	1.430
$ ho_{\xi}$	0.916	1.000

• $f_H/f_L = 3.9$ vs. $f_H/f_L = 1.4$ in benchmark

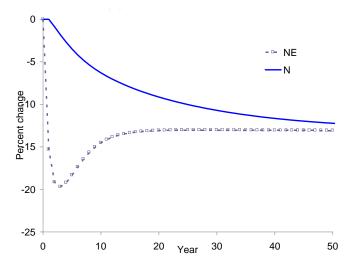
In benchmark model, high survival rate arises because producers don't want to go through growth process again — not sunk costs. Profits of marginal starters: $(E\pi_{x,t} - f)/f_H^{bench}$


Overview

- ► Exporter dynamics facts
- ► Model
- Results
 - Estimates of export technology
 - ► Welfare in bilateral trade reform
 - ► Welfare in unilateral trade reform


3 experiments

- **1.** Benchmark: $\xi_H > \xi_L$, $f_H > f_L$
- **2.** Sunk cost: $\xi_H = \xi_L$, $f_H > f_L$
- **3.** No cost: $\xi_H = \xi_L$, $f_H = f_L = 0$
- Consider unanticipated global tariff reduction, $\tau = 0.1 \rightarrow \tau = 0$


Dynamics following elimination of 10 percent tariff Benchmark Model: Trade elasticity

Dynamics following elimination of 10 percent tariff Benchmark Model: Aggregate dynamics

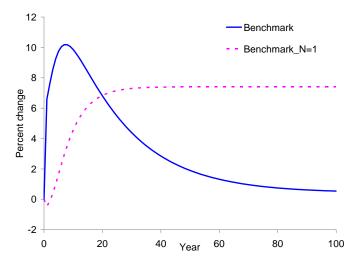
Dynamics following elimination of 10 percent tariff Benchmark Model: Aggregate dynamics

Change	Benchmark	Sunk-cost	No-cost
Welfare gain	6.30		
Avg. trade elasticity $(\bar{arepsilon}_t)$	10.2		
Δ SS. Consumption	0.42		
SS. Trade elasticity	11.5		

$$\bar{\varepsilon}_t = (1-\beta) \sum_{t=0}^{\infty} \beta^t \varepsilon_t$$

Source of overshooting

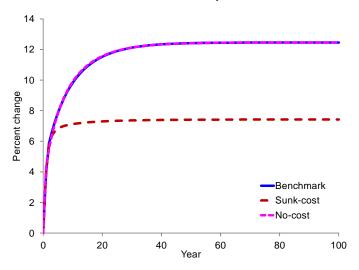
- Tariffs lead to an overaccumulation of establishments relative to free trade steady state
- ► These establishments can be converted at a low cost to exporters
- ► Labor that would have gone to firm creation goes to production


Firms in the United States

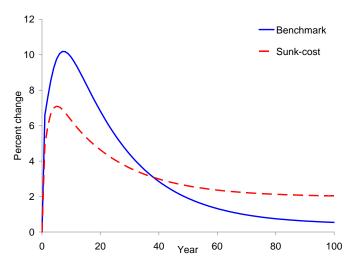
Source of overshooting

- Tariffs lead to an overaccumulation of establishments relative to free trade steady state
- ▶ These establishments can be converted at a low cost to exporters
- ► Labor that would have gone to firm creation goes to production
- ▶ Plant creation dynamics key to overshooting
- Experiment: subsidize entry so that $N_t = 1$

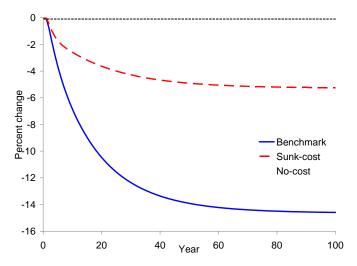
Dynamics following elimination of 10 percent tariff Aggregate Output


The sunk-cost model

- ▶ Literature has focused on sunk costs as a source of persistent exporting
- ► Sunk cost model misses out on aspects of new exporter dynamics.
- ► Ask: How well does this simpler dynamic model of exporter approximate trade/welfare predictions of the benchmark model?

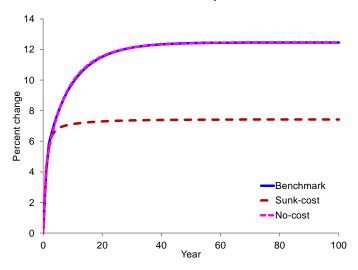

The sunk-cost model

- ▶ Literature has focused on sunk costs as a source of persistent exporting
- ▶ Sunk cost model misses out on aspects of new exporter dynamics.
- ► Ask: How well does this simpler dynamic model of exporter approximate trade/welfare predictions of the benchmark model?
- ► Answer: Not so good on trade, pretty good on consumption/welfare

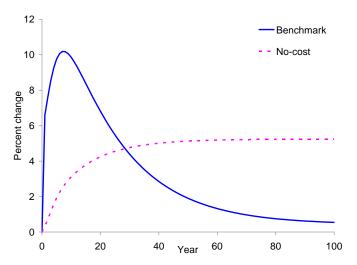

Trade elasticity

Consumption

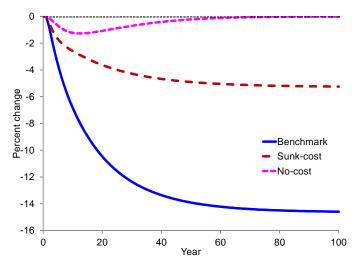
Establishments



Change	Benchmark	Sunk-cost	No-cost
Welfare gain	6.30	4.75	
Avg. trade elasticity $(\bar{arepsilon}_t)$	10.2	6.9	
Δ SS. Consumption	0.42	1.98	
SS. Trade elasticity	11.5	7.2	


$$\bar{\varepsilon}_t = (1-\beta) \sum_{t=0}^{\infty} \beta^t \varepsilon_t.$$

- ▶ Krugman (1980): all firms export
- ► Requires two main changes
 - 1. Change θ to get LR trade elasticity
 - 2. Add adjustment friction to get dynamics of trade elasticity


Trade elasticity

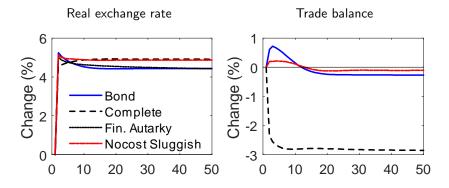
Consumption

Establishments

Change	Benchmark	Sunk-cost	No-cost
Welfare gain	6.30	4.75	2.34
Discounted trade elasticity	10.2	6.9	10.2
Δ SS. Consumption	0.42	1.98	3.93
SS. Trade elasticity	11.5	7.2	11.5

$$\bar{\varepsilon}_t = (1-\beta) \sum_{t=0}^{\infty} \beta^t \varepsilon_t.$$

Unilateral liberalization


- ▶ Only home country eliminates tariff
- ► Financial autarky; non-contingent bond; complete markets
- Asymmetry generates
 - ► Unbalanced trade
 - ► Real exchange rate movements

Change		Benchmark		No-cost
		Bond	Complete Markets	Bond
Welfare				
	Home	0.51		
	Foreign	5.70		
SS Consu	Imption			
	Home	-2.43		
	Foreign	2.82		

Change			No-cost		
		Bond	Complete Markets	Bond	
Welfare					
	Home	0.51	4.34		
	Foreign	5.70	1.91		
SS Consumption					
	Home	-2.43	1.45		
	Foreign	2.82	-1.00		

Change		Benchmark		No-cost
		Bond	Complete Markets	Bond
Welfare				
Ho	ome	0.51		-0.62
Fo	oreign	5.70		4.92
SS Consumpt	ion			
Ho	ome	-2.43		-0.06
Fo	oreign	2.82		5.49

Dynamics following unilateral liberalization

Unilateral liberalization

- ► Developed general model of fixed/variable cost trade-off
- ► Selection effect weakened producers & exporters quite substituteable
- ► Transition boost gains even through trade grows slowly
- ▶ Micro trade dynamics (and micro data) determine gains from trade
- ▶ Need more micro- and macro work measuring export dynamics