The Distributional Consequences of Large Devaluations (AER, 2017)

Presenter: Yeonggyu Yun

Econ 871 Short Presentation

October 26, 2022

Question

- What are the differential effects of changes in the relative price of goods on households, following a large devaluation?
- What are the underlying mechanisms of such distributional effects?

Preview of the Main Result

- 1. Cost of living for low-income households rose significantly as compared to that of high-income households.
- Such effect is largely because low-income households consume tradable goods, goods with more tradable components, and goods with lower distribution margins more than high-income households.

Methodology and Framework

 Construct household-specific price indices using data from Bank of Mexico and Mexican household surveys to estimate "Across" and "Within" effects of 1994 Mexican devaluation

$$\hat{P}_{t}^{h} = \underbrace{\sum_{g \in G} \omega_{g}^{h} \hat{P}_{g,t}}_{\hat{P}_{Across,t}} + \underbrace{\sum_{g \in G} \omega_{g} \hat{P}_{g,t}^{h}}_{\hat{P}_{Within,t}^{h}} + \underbrace{\sum_{g \in G} \left(\omega_{g}^{h} - \omega_{g}\right) \left(\hat{P}_{g,t}^{h} - \hat{P}_{g,t}\right) - \underbrace{\sum_{g \in G} \omega_{g} \hat{P}_{g,t}}_{\hat{P}_{t}}$$

Inspect the mechanism focusing on distribution margin $(1-\eta)$ and pass-through of exchange rate change α : Set up formulae for price changes and estimate them

$$\begin{split} \hat{P}_{\nu_g,t} &= \eta_{\nu_g} \hat{P}_{\nu_g,t}^T + (1 - \eta_{\nu_g}) \hat{P}_t^D = \hat{P}_t^N + \eta_{\nu_g} \alpha_{\nu_g} \hat{E}_t \\ \\ \hat{P}_{g,t} &= \hat{P}_t^N + \eta_g \alpha_g \hat{E}_t + \mathsf{Cov}_{\nu} (\eta_{\nu_g}, \alpha_{\nu_g}) \hat{E}_t \end{split}$$

Effects of Relative Price Changes

Premises

- 1. Change in prices, $\hat{P}_{g,t}$ and $\hat{P}_{\nu_g,t}$, are observed in DOF data
- 2. Weights, \hat{w}_g^h and $s_{\nu_g}^h$, are obtained from 1994 Mexican household survey
- Survey data confirms that high-income households consume high-priced varieties while low-income households consume low-priced varieties.

	Across		Within		Combined	
	$\sum_{g} \omega_{g}^{h} \hat{P}_{g,t}$		$\sum_{g} \omega_{g} \hat{P}_{g,t}^{h}$		$\sum_{g} \omega_{g}^{h} \hat{P}_{g,t}^{h}$	
	Decile 1	Decile 10	Quart 1	Quart 4	Quart 1	Quart 4
1994	1.00	1.00	1.00	1.00	1.00	1.00
1996	1.87	1.79	1.92	1.71	2.08	1.68

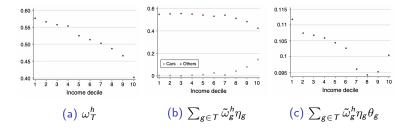

Table 1: Household-specific Price Indices

Understanding Across Effect - Price Change

$$\hat{P}_{g,t} = \hat{P}_t^N + \eta_g \alpha_{loc} \hat{E}_t + \eta_g \theta_g (\alpha_{int} - \alpha_{loc}) \hat{E}_t$$

Price change of a good category g is bigger with

- 1. Higher η_g : Lower distribution margin
- 2. Higher θ_g : Higher fraction of traded varieties within g



Understanding Across Effect - Consumption Patterns

$$\hat{P}_{Across,t}^{h} = \hat{P}_{t}^{N} + \omega_{T}^{h} \left[\alpha_{loc} \sum_{g \in T} \tilde{\omega}_{g}^{h} \eta_{g} + [\alpha_{int} - \alpha_{loc}] \sum_{g \in T} \tilde{\omega}_{g}^{h} \eta_{g} \theta_{g} \right] \hat{E}_{t}$$

Across effect is bigger with

- 1. Higher ω_T^h : Higher expenditure share on tradable goods
- 2. Higher $\sum_{g \in \mathcal{T}} \tilde{\omega}_g^h \eta_g$: More g with low distribution margins
- 3. Higher $\sum_{g \in T} \tilde{\omega}_g^h \eta_g \theta_g$: More g with low local variety shares

Understanding Within Effect

$$\begin{split} \hat{P}_{\nu_g,t} - \hat{P}_{g,t} &= \left(\frac{\eta_{\nu_g,t-1} \frac{\alpha_{\nu_g}}{\alpha_g} - \eta_{g,t-1}}{\eta_{g,t-1}}\right) \eta_{g,t-1} \alpha_g \hat{E}_t \\ \Rightarrow \hat{P}_{\nu_g,t} - \hat{\bar{P}}_{g,t} &= \left(\frac{\eta_{\nu_g,t-1} - \bar{\eta}_{g,t-1}}{\bar{\eta}_{g,t-1}}\right) \bar{\eta}_{g,t-1} \bar{\alpha}_g \hat{E}_t = \left(\frac{\bar{P}_{g,t-1} - P_{\nu_g,t-1}}{P_{\nu_g,t-1}}\right) \bar{\eta}_{g,t-1} \bar{\alpha}_g \hat{E}_t \end{split}$$

	Devaluation	Placebo
Coef.	1.426 (0.282)	-0.086 (0.052)
R^2	0.135	0.003

Table 2: Predicted and Observed $\hat{P}_{\nu_g,t} - \hat{P}_{g,t}$

- ▶ Within effects are larger for varieties with high η_{ν_g} .
- ▶ Distribution margins $(1 \eta_{\nu_g})$ are lower for cheaper varieties.
- ► Local goods are not necessarily cheaper varieties.
- Expensive varieties with higher quality might potentially have lower α_{ν_g} or lower mark-ups. (NOT checked in this paper)