Understand $\Delta's$ in imports and prices after large devaluation

Devaluation: large increase in relative price of imports at dock

Slow increase in import prices at retail level

Understand $\Delta's$ in imports and prices after large devaluation

Devaluation: large increase in relative price of imports at dock

Slow increase in import prices at retail level

2 Large NX reversals accounted for by drop in imports

Understand $\Delta's$ in imports and prices after large devaluation

Devaluation: large increase in relative price of imports at dock

Slow increase in import prices at retail level

2 Large NX reversals accounted for by drop in imports

• Large drop in extensive margin of trade: # of varieties imported

Figure 1: Devaluation in Argentina 2002

Understand $\Delta's$ in imports and prices after large devaluation

Devaluation: large increase in relative price of imports at dock

Slow increase in import prices at retail level

2 Large NX reversals accounted for by drop in imports

Large drop in extensive margin of trade: # of varieties imported

Common to: Argentina, Brazil, Mexico, Korea, Thailand, Russia.

Overview

- Document: evidence of the key frictions
 - Delivery lags & fixed transaction costs
 - Importer's inventory behavior
 - Lumpy international transactions

Fact 1: Trade friction: delivery lags

Lags between order and delivery: 6-8 weeks

- Shipping lags (Hummels 99)
 - 2-6 weeks by vessel, 1 day by air
 - most trade with developing countries by vessel: 70%
- Customs/paperwork (World Bank "Doing Business" survey)
 - Adds 2-5 weeks

WB logistics survey: http://lpi.worldbank.org/

Fact 1: Trade friction: fixed transaction costs

	Argentina	Russia	Mexico
Documents preparation	\$750	\$437	\$206
Customs clearance &	\$150	\$150 \$500	\$224
technical control	\$120		
Port & terminal handling	\$600		\$165
U.S. export costs	\$625	\$625	\$625
Fraction of mean shipment	0.04	0.02	0.01
Fraction of median shipment	0.17	0.07	0.11

• Also, freight (pprox 1/2 above costs) has fixed component

Fact 2: Inventory problems bigger for traders

Chilean plant-level data (Hsieh-Parker 07)

• Unbalanced panel from 90 - 01

$$i_{jt} = c + \alpha_M \cdot s_{jt}^M + \alpha_X \cdot s_{jt}^X + e_{jt}$$

- *i_{jt}* : inventory to materials ratio
- s_{it}^M : imports as share of material purchases
- s_{it}^{χ} : exports as share of shipments

Inventory problems bigger for importers/exporters

Regression Results of Inventory Holdings on Import Content

	С	α_M	αχ
Inventory w control for L	0.18	0.187	
	(18.4)	(15.6)	
Inventory w control for L	0.22	0.15	0.25
(t-stat)	(10.4)	(15.0)	$(\angle I)$

- Non-importer 2.5 months, 100% imp/exp. holds 7.5 months
- Inventory premium holds
 - Separately for materials & finished goods
 - Industry FE, controlling for employment
- Nadais (17) confirms findings for India, Peru, & Colombia

Inventory problems bigger for exporters/importers

Regression Results of Inventory Holdings on Import Content

U.S. Data	С	α_M	α_X
Inventory w controls for labor	0.22	0.193	0.197
(t–stat)	(31)	(11.4)	(4.8)

• Similar premia to Chilean data

۲

Two bits of evidence:

- US Steel Wholesaler
- US Exports (highly disaggregated)

۲

U.S. steel importer (Hall-Rust)

- Transaction-level data, identical goods from home & imported
- 3573 goods, 18104 transactions, 9 years of daily data

Purchases of Hot Rolled Steel Coils (1/4 inch by 48)

- U.S. steel importer (Hall-Rust)
 - Transaction-level data, identical goods from home & imported
 - 3573 goods, 18104 transactions, 9 years of daily data
 - Imports premia:
 - Purchases 50 percent larger
 - Mean interval: 205 vs 100 days (median: 140 vs 56 days)

Data:

- All U.S. export goods, monthly, 1990-2005
- Variables: values and quantities, # of transactions
- "Good" = HS-10 commodity x port of exit
- Data available online from USITC.

Sample of Import Lumpiness: TABLEWARE AND KITCHENWARE, OF PORCELAIN OR CHINA, NOT FOR HOTELS OR RESTAURANTS

	Argentina	Russia	Mexico
fract.of mos. good exported	0.47	0.43	0.90
Hirschmann-Herfindahl index	0.40	0.45	0.21
fract. of annual trade in top mo.	0.50	0.53	0.27
fract. of annual trade in top 3 mos.	0.83	0.85	0.53
# of trans. (in periods w/ trade)	2.2	2.7	32.3

Hirschmann-Herfindahl index

$$extsf{HH} = \sum_{i=1}^{12} extsf{s}_i^2$$
 ,

where s_i = share of annual trade values in month i

- ranges from 1/12 to 1
- If equal values in months with positive trade:
 - ► 1/HH : number of months with positive trade
 - i.e., HH = 0.45: 2.2 months of trade during the year

Not due to seasonalities:

	Argentina	Russia	Mexico
Within Year, Across Month			
Hirschmann-Herfindahl index	0.40	0.45	0.21
fract. of annual trade in top mo.	0.52	0.53	0.27
fract. of annual trade in top 3 mos.	0.85	0.85	0.53
Across Year, Within Month			
Hirschmann-Herfindahl index	0.5	0.75	0.15
fract. of annual trade in top mo.	0.60	0.80	0.25
fract. of annual trade in top 3 mos.	0.96	1.00	0.54
# years traded	8.0	4.0	8.0

Pervasive across goods:

	Food	Int	Сар	Auto/ Parts	Cons
mos. export (%)	0.33	0.45	0.36	0.68	0.45
HH index	0.53	0.40	0.52	0.35	0.41
Top mo.	0.59	0.49	0.61	0.42	0.51
Top 3 mos.	0.89	0.83	0.90	0.74	0.84
Share US Exports	0.02	0.42	0.13	0.06	0.07

Research Question: How is lumpiness related to cyclicality of trade?